864 resultados para flood risk,intermediate-complexity model,climate change adaptation
Resumo:
Estuaries are highly dynamic systems which may be modified in a climate change context. These changes can affect the biogeochemical cycles. Among the major impacts of climate change, the increasing rainfall events and sea level rise can be considered. This study aims to research the impact of those events in biogeochemical dynamics in the Tagus Estuary, which is the largest and most important estuary along the Portuguese coast. In this context a 2D biophysical model (MOHID) was implemented, validated and explored, through comparison with in-situ data. In order to study the impact of extreme rainfall events, which can be characterized by an high increase in freshwater inflow, three scenarios were set by changing the inputs from the main tributaries, Tagus and Sorraia Rivers. A realistic scenario considering one day of Tagus and Sorraia River extreme discharge, a scenario considering one day of single extreme discharge of the Tagus River and finally one considering the extreme runoff just from Sorraia River. For the mean sea level rise, two scenarios were also established. The first with the actual mean sea level value and the second considering an increase of 0.42 m. For the extreme rainfall events simulations, the results suggest that the biogeochemical characteristics of the Tagus Estuary are mainly influenced by Tagus River discharge. For sea level rise scenario, the results suggest a dilution in nutrient concentrations and an increase in Chl-a in specific areas.For both scenarios, the suggested increase in Chl-a concentration for specific estuarine areas, under the tested scenarios, can lead to events that promote an abnormal growth of phytoplankton (blooms) causing the water quality to drop and the estuary to face severe quality issues risking all the activities that depend on it.
Resumo:
Global projections for climate change impacts produce a startling picture of the future for low-lying coastal communities. The United States’ Chesapeake Bay region and especially marginalized and rural communities will be severely impacted by sea level rise and other changes over the next one hundred years. The concept of resilience has been theorized as a measure of social-ecological system health and as a unifying framework under which people can work together towards climate change adaptation. But it has also been critiqued for the way in which it does not adequately take into account local perspective and experiences, bringing into question the value of this concept as a tool for local communities. We must be sure that the concerns, weaknesses, and strengths of particular local communities are part of the climate change adaptation, decision-making, and planning process in which communities participate. An example of this type of planning process is the Deal Island Marsh and Community Project (DIMCP), a grant funded initiative to build resilience within marsh ecosystems and communities of the Deal Island Peninsula area of Maryland (USA) to environmental and social impacts from climate change. I argue it is important to have well-developed understandings of vulnerabilities and resiliencies identified by local residents and others to accomplish this type of work. This dissertation explores vulnerability and resilience to climate change using an engaged and ethnographic anthropological perspective. Utilizing participant observation, semi-structured and structured interviews, text analysis, and cultural domain analysis I produce an in-depth perspective of what vulnerability and resilience means to the DIMCP stakeholder network. Findings highlight significant vulnerabilities and resiliencies inherent in the local area and how these interface with additional vulnerabilities and resiliencies seen from a nonlocal perspective. I conclude that vulnerability and resilience are highly dynamic and context-specific for the local community. Vulnerabilities relate to climate change and other social and environmental changes. Resilience is a long-standing way of life, not a new concept related specifically to climate change. This ethnographic insight into vulnerability and resilience provides a basis for stronger engagement in collaboration and planning for the future.
Resumo:
The higher education system has a critical role to play in educating environmentally aware and participant citizens about global climate change. Yet, few studies have focused on higher education students’ knowledge and attitudes about this issue. This study aims to contribute to a comprehensive understanding of views and attitudes about climate change issues, across the postgraduate student population in three universities—the on Campus University of Porto and University of Coimbra, and the distance learning Universidade Aberta, Portugal. We surveyed university students and graduates from three master programs in environmental sciences targeting their knowledge, attitudes and behaviour on climate change issues, and their views of the role that their master degree had on it. A majority of the respondents believed that climate change is factual, and is largely human-induced; and a majority expressed concerns about climate change. Still, the surveyed students hold some misconceptions about basic causes and consequences of climate change. Further research is necessary to comprehend the university postgraduate students’ population, so that curricula programs can be adapted to grant consensus on scientific knowledge about climate change, and an active engagement of the graduate citizens, as part of the solution for climate change problems.
Resumo:
This paper is an analysis of emic versus etic approaches to climate change resiliency, taking as a case study the traditional ceremony performed by farmers in eastern Flores, Indonesia to rid their fields of rats. This paper begins by providing a theoretical framework discussion on the dominant etic and emic academic research on monsoons and climate change impacts on agriculture. The rat ceremony performed in villages throughout East Flores is a local custom used to rid agricultural fields of pests—often rats—that come from the surrounding forests to feed on the agricultural crops when the rains become erratic. This paper argues that analyzing the rat ceremony through an emic lens allows for better future resiliency to monsoon shifts due to climate change. It is argued that the rat ceremony demonstrates a way in which community resiliency is strengthened by an adaptive approach that supports an already existing community ceremony that emphasizes two essential tenets: community solidarity and coexistence with nature. Both tenets directly promote community resiliency. An explicit emphasis on emic approaches to climate change challenges could help re-define how resiliency is understood and supported within vulnerable communities such as rural villages.
Resumo:
Adaptive Social Protection refers to efforts to integrate social protection (SP), disaster risk reduction (DRR) and climate change adaptation (CCA). The need to integrate these three domains is now increasingly recognized by practitioners and academics. Relying on 124 agricultural programmes implemented in 5 countries in Asia, this paper considers how these elements are being brought together, and explores the potential gains of these linkages. The analysis shows that full integration of SP, DRR and CCA interventions is still relatively limited but that when it occurs, integration helps to shift the time horizon beyond short-term interventions aimed at supporting peoples’ coping strategies and/or graduation objectives, toward longer-term interventions that can assist in promoting transformation towards climate and disaster resilient livelihood options.
Resumo:
An aim of government and the international community is to respond to global processes and crises through a range of policy and practical approaches that help limit damage from shocks and stresses. Three approaches to vulnerability reduction that have become particularly prominent in recent years are social protection (SP), disaster risk reduction (DRR) and climate change adaptation (CCA). Although these approaches have much in common, they have developed separately over the last two decades. However, given the increasingly complex and interlinked array of risks that poor and vulnerable people face, it is likely that they will not be sufficient in the long run if they continue to be applied in isolation from one another. In recognition of this challenge, the concept of Adaptive Social Protection (ASP) has been developed. ASP refers to a series of measures which aims to build resilience of the poorest and most vulnerable people to climate change by combining elements of SP, DRR and CCA in programmes and projects. The aim of this paper is to provide an initial assessment of the ways in which these elements are being brought together in development policy and practice. It does this by conducting a meta-analysis of 124 agricultural programmes implemented in five countries in south Asia. These are Afghanistan, Bangladesh, India, Nepal and Pakistan. The findings show that full integration of SP, DRR and CCA is relatively limited in south Asia, although there has been significant progress in combining SP and DRR in the last ten years. Projects that combine elements of SP, DRR and CCA tend to emphasise broad poverty and vulnerability reduction goals relative to those that do not. Such approaches can provide valuable lessons and insights for the promotion of climate resilient livelihoods amongst policymakers and practitioners.
Resumo:
Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes appear to be slightly underestimated. It is possible that recent modelled climate trends or climate–carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated. Several one thousand year long, idealized, 2 × and 4 × CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate–carbon feedbacks. The values from EMICs generally fall within the range given by general circulation models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows a non-linear interaction between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there is a tendency for the EMICs to underestimate the drop in surface air temperature and CO2 between the Medieval Climate Anomaly and the Little Ice Age estimated from palaeoclimate reconstructions. This in turn could be a result of unforced variability within the climate system, uncertainty in the reconstructions of temperature and CO2, errors in the reconstructions of forcing used to drive the models, or the incomplete representation of certain processes within the models. Given the forcing datasets used in this study, the models calculate significant land-use emissions over the pre-industrial period. This implies that land-use emissions might need to be taken into account, when making estimates of climate–carbon feedbacks from palaeoclimate reconstructions.
Resumo:
Radiative forcing and climate sensitivity have been widely used as concepts to understand climate change. This work performs climate change experiments with an intermediate general circulation model (IGCM) to examine the robustness of the radiative forcing concept for carbon dioxide and solar constant changes. This IGCM has been specifically developed as a computationally fast model, but one that allows an interaction between physical processes and large-scale dynamics; the model allows many long integrations to be performed relatively quickly. It employs a fast and accurate radiative transfer scheme, as well as simple convection and surface schemes, and a slab ocean, to model the effects of climate change mechanisms on the atmospheric temperatures and dynamics with a reasonable degree of complexity. The climatology of the IGCM run at T-21 resolution with 22 levels is compared to European Centre for Medium Range Weather Forecasting Reanalysis data. The response of the model to changes in carbon dioxide and solar output are examined when these changes are applied globally and when constrained geographically (e.g. over land only). The CO2 experiments have a roughly 17% higher climate sensitivity than the solar experiments. It is also found that a forcing at high latitudes causes a 40% higher climate sensitivity than a forcing only applied at low latitudes. It is found that, despite differences in the model feedbacks, climate sensitivity is roughly constant over a range of distributions of CO2 and solar forcings. Hence, in the IGCM at least, the radiative forcing concept is capable of predicting global surface temperature changes to within 30%, for the perturbations described here. It is concluded that radiative forcing remains a useful tool for assessing the natural and anthropogenic impact of climate change mechanisms on surface temperature.
Resumo:
This paper presents an assessment of the implications of climate change for global river flood risk. It is based on the estimation of flood frequency relationships at a grid resolution of 0.5 × 0.5°, using a global hydrological model with climate scenarios derived from 21 climate models, together with projections of future population. Four indicators of the flood hazard are calculated; change in the magnitude and return period of flood peaks, flood-prone population and cropland exposed to substantial change in flood frequency, and a generalised measure of regional flood risk based on combining frequency curves with generic flood damage functions. Under one climate model, emissions and socioeconomic scenario (HadCM3 and SRES A1b), in 2050 the current 100-year flood would occur at least twice as frequently across 40 % of the globe, approximately 450 million flood-prone people and 430 thousand km2 of flood-prone cropland would be exposed to a doubling of flood frequency, and global flood risk would increase by approximately 187 % over the risk in 2050 in the absence of climate change. There is strong regional variability (most adverse impacts would be in Asia), and considerable variability between climate models. In 2050, the range in increased exposure across 21 climate models under SRES A1b is 31–450 million people and 59 to 430 thousand km2 of cropland, and the change in risk varies between −9 and +376 %. The paper presents impacts by region, and also presents relationships between change in global mean surface temperature and impacts on the global flood hazard. There are a number of caveats with the analysis; it is based on one global hydrological model only, the climate scenarios are constructed using pattern-scaling, and the precise impacts are sensitive to some of the assumptions in the definition and application.
Resumo:
Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes appear to be slightly underestimated. It is possible that recent modelled climate trends or climate–carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated. Several one thousand year long, idealized, 2 × and 4 × CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate–carbon feedbacks. The values from EMICs generally fall within the range given by general circulation models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows a non-linear interaction between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there is a tendency for the EMICs to underestimate the drop in surface air temperature and CO2 between the Medieval Climate Anomaly and the Little Ice Age estimated from palaeoclimate reconstructions. This in turn could be a result of unforced variability within the climate system, uncertainty in the reconstructions of temperature and CO2, errors in the reconstructions of forcing used to drive the models, or the incomplete representation of certain processes within the models. Given the forcing datasets used in this study, the models calculate significant land-use emissions over the pre-industrial period. This implies that land-use emissions might need to be taken into account, when making estimates of climate–carbon feedbacks from palaeoclimate reconstructions.
Resumo:
The main objective of this thesis on flooding was to produce a detailed report on flooding with specific reference to the Clare River catchment. Past flooding in the Clare River catchment was assessed with specific reference to the November 2009 flood event. A Geographic Information System was used to produce a graphical representation of the spatial distribution of the November 2009 flood. Flood risk is prominent within the Clare River catchment especially in the region of Claregalway. The recent flooding events of November 2009 produced significant fluvial flooding from the Clare River. This resulted in considerable flood damage to property. There were also hidden costs such as the economic impact of the closing of the N17 until floodwater subsided. Land use and channel conditions are traditional factors that have long been recognised for their effect on flooding processes. These factors were examined in the context of the Clare River catchment to determine if they had any significant effect on flood flows. Climate change has become recognised as a factor that may produce more significant and frequent flood events in the future. Many experts feel that climate change will result in an increase in the intensity and duration of rainfall in western Ireland. This would have significant implications for the Clare River catchment, which is already vulnerable to flooding. Flood estimation techniques are a key aspect in understanding and preparing for flood events. This study uses methods based on the statistical analysis of recorded data and methods based on a design rainstorm and rainfall-runoff model to estimate flood flows. These provide a mathematical basis to evaluate the impacts of various factors on flooding and also to generate practical design floods, which can be used in the design of flood relief measures. The final element of the thesis includes the author’s recommendations on how flood risk management techniques can reduce existing flood risk in the Clare River catchment. Future implications to flood risk due to factors such as climate change and poor planning practices are also considered.
Resumo:
Crop production is inherently sensitive to fluctuations in weather and climate and is expected to be impacted by climate change. To understand how this impact may vary across the globe many studies have been conducted to determine the change in yield of several crops to expected changes in climate. Changes in climate are typically derived from a single to no more than a few General Circulation Models (GCMs). This study examines the uncertainty introduced to a crop impact assessment when 14 GCMs are used to determine future climate. The General Large Area Model for annual crops (GLAM) was applied over a global domain to simulate the productivity of soybean and spring wheat under baseline climate conditions and under climate conditions consistent with the 2050s under the A1B SRES emissions scenario as simulated by 14 GCMs. Baseline yield simulations were evaluated against global country-level yield statistics to determine the model's ability to capture observed variability in production. The impact of climate change varied between crops, regions, and by GCM. The spread in yield projections due to GCM varied between no change and a reduction of 50%. Without adaptation yield response was linearly related to the magnitude of local temperature change. Therefore, impacts were greatest for countries at northernmost latitudes where warming is predicted to be greatest. However, these countries also exhibited the greatest potential for adaptation to offset yield losses by shifting the crop growing season to a cooler part of the year and/or switching crop variety to take advantage of an extended growing season. The relative magnitude of impacts as simulated by each GCM was not consistent across countries and between crops. It is important, therefore, for crop impact assessments to fully account for GCM uncertainty in estimating future climates and to be explicit about assumptions regarding adaptation.
Resumo:
A holistic perspective on changing rainfall-driven flood risk is provided for the late 20th and early 21st centuries. Economic losses from floods have greatly increased, principally driven by the expanding exposure of assets at risk. It has not been possible to attribute rain-generated peak streamflow trends to anthropogenic climate change over the past several decades. Projected increases in the frequency and intensity of heavy rainfall, based on climate models, should contribute to increases in precipitation-generated local flooding (e.g. flash flooding and urban flooding). This article assesses the literature included in the IPCC SREX report and new literature published since, and includes an assessment of changes in flood risk in seven of the regions considered in the recent IPCC SREX report—Africa, Asia, Central and South America, Europe, North America, Oceania and Polar regions. Also considering newer publications, this article is consistent with the recent IPCC SREX assessment finding that the impacts of climate change on flood characteristics are highly sensitive to the detailed nature of those changes and that presently we have only low confidence1 in numerical projections of changes in flood magnitude or frequency resulting from climate change.
Resumo:
Small and medium-sized companies and other enterprises (SMEs) around the world are exposed to flood risk and many of the 4.5 million in the UK are at risk. As SMEs represent almost half of total business turnover in the UK, their protection is a vital part of the drive for greater climate change resilience. However, few have measures in place to ensure the continuity of their activities during a flood and its aftermath. The SESAME project aims to develop tools that encourage businesses to discover ways of becoming more resilient to floods and to appreciate how much better off they will be once they have adapted to the ongoing risk. By taking some of the mystery out of flooding and flood risk, it aims to make it susceptible to the same business acumen that enables the UK’s SMEs to deal with the many other challenges they face. In this paper we will report on the different aspects of the research in the project Understanding behaviour Changing behaviour Modelling impacts Economic impacts Through the above the project will advise government, local authorities and other public bodies on how to improve their responses to floods and will enable them to recommend ways to improve the guidelines provided to SMEs in flood risk areas.