916 resultados para flood forecasting model


Relevância:

90.00% 90.00%

Publicador:

Resumo:

May 1979.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

"January, 1985."

Relevância:

90.00% 90.00%

Publicador:

Resumo:

At head of cover title: Generalized computer program.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As the formative agents of cloud droplets, aerosols play an undeniably important role in the development of clouds and precipitation. Few meteorological models have been developed or adapted to simulate aerosols and their contribution to cloud and precipitation processes. The Weather Research and Forecasting model (WRF) has recently been coupled with an atmospheric chemistry suite and is jointly referred to as WRF-Chem, allowing atmospheric chemistry and meteorology to influence each other’s evolution within a mesoscale modeling framework. Provided that the model physics are robust, this framework allows the feedbacks between aerosol chemistry, cloud physics, and dynamics to be investigated. This study focuses on the effects of aerosols on meteorology, specifically, the interaction of aerosol chemical species with microphysical processes represented within the framework of the WRF-Chem. Aerosols are represented by eight size bins using the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) sectional parameterization, which is linked to the Purdue Lin bulk microphysics scheme. The aim of this study is to examine the sensitivity of deep convective precipitation modeled by the 2D WRF-Chem to varying aerosol number concentration and aerosol type. A systematic study has been performed regarding the effects of aerosols on parameters such as total precipitation, updraft/downdraft speed, distribution of hydrometeor species, and organizational features, within idealized maritime and continental thermodynamic environments. Initial results were obtained using WRFv3.0.1, and a second series of tests were run using WRFv3.2 after several changes to the activation, autoconversion, and Lin et al. microphysics schemes added by the WRF community, as well as the implementation of prescribed vertical levels by the author. The results of WRFv3.2 runs contrasted starkly with WRFv3.0.1 runs. The WRFv3.0.1 runs produced a propagating system resembling a developing squall line, whereas the WRFv3.2 runs did not. The response of total precipitation, updraft/downdraft speeds, and system organization to increasing aerosol concentrations were opposite between runs with different versions of WRF. Results of the WRFv3.2 runs, however, were in better agreement in timing and magnitude of vertical velocity and hydrometeor content with a WRFv3.0.1 run using single-moment Lin et al. microphysics, than WRFv3.0.1 runs with chemistry. One result consistent throughout all simulations was an inhibition in warm-rain processes due to enhanced aerosol concentrations, which resulted in a delay of precipitation onset that ranged from 2-3 minutes in WRFv3.2 runs, and up to 15 minutes in WRFv.3.0.1 runs. This result was not observed in a previous study by Ntelekos et al. (2009) using the WRF-Chem, perhaps due to their use of coarser horizontal and vertical resolution within their experiment. The changes to microphysical processes such as activation and autoconversion from WRFv3.0.1 to WRFv3.2, along with changes in the packing of vertical levels, had more impact than the varying aerosol concentrations even though the range of aerosol tested was greater than that observed in field studies. In order to take full advantage of the input of aerosols now offered by the chemistry module in WRF, the author recommends that a fully double-moment microphysics scheme be linked, rather than the limited double-moment Lin et al. scheme that currently exists. With this modification, the WRF-Chem will be a powerful tool for studying aerosol-cloud interactions and allow comparison of results with other studies using more modern and complex microphysical parameterizations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Shows "Stream reaches analyzed" and "Map location & plate number."

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study we examined the impact of weather variability and tides on the transmission of Barmah Forest virus (BFV) disease and developed a weather-based forecasting model for BFV disease in the Gladstone region, Australia. We used seasonal autoregressive integrated moving-average (SARIMA) models to determine the contribution of weather variables to BFV transmission after the time-series data of response and explanatory variables were made stationary through seasonal differencing. We obtained data on the monthly counts of BFV cases, weather variables (e.g., mean minimum and maximum temperature, total rainfall, and mean relative humidity), high and low tides, and the population size in the Gladstone region between January 1992 and December 2001 from the Queensland Department of Health, Australian Bureau of Meteorology, Queensland Department of Transport, and Australian Bureau of Statistics, respectively. The SARIMA model shows that the 5-month moving average of minimum temperature (β = 0.15, p-value < 0.001) was statistically significantly and positively associated with BFV disease, whereas high tide in the current month (β = −1.03, p-value = 0.04) was statistically significantly and inversely associated with it. However, no significant association was found for other variables. These results may be applied to forecast the occurrence of BFV disease and to use public health resources in BFV control and prevention.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multivariate volatility forecasts are an important input in many financial applications, in particular portfolio optimisation problems. Given the number of models available and the range of loss functions to discriminate between them, it is obvious that selecting the optimal forecasting model is challenging. The aim of this thesis is to thoroughly investigate how effective many commonly used statistical (MSE and QLIKE) and economic (portfolio variance and portfolio utility) loss functions are at discriminating between competing multivariate volatility forecasts. An analytical investigation of the loss functions is performed to determine whether they identify the correct forecast as the best forecast. This is followed by an extensive simulation study examines the ability of the loss functions to consistently rank forecasts, and their statistical power within tests of predictive ability. For the tests of predictive ability, the model confidence set (MCS) approach of Hansen, Lunde and Nason (2003, 2011) is employed. As well, an empirical study investigates whether simulation findings hold in a realistic setting. In light of these earlier studies, a major empirical study seeks to identify the set of superior multivariate volatility forecasting models from 43 models that use either daily squared returns or realised volatility to generate forecasts. This study also assesses how the choice of volatility proxy affects the ability of the statistical loss functions to discriminate between forecasts. Analysis of the loss functions shows that QLIKE, MSE and portfolio variance can discriminate between multivariate volatility forecasts, while portfolio utility cannot. An examination of the effective loss functions shows that they all can identify the correct forecast at a point in time, however, their ability to discriminate between competing forecasts does vary. That is, QLIKE is identified as the most effective loss function, followed by portfolio variance which is then followed by MSE. The major empirical analysis reports that the optimal set of multivariate volatility forecasting models includes forecasts generated from daily squared returns and realised volatility. Furthermore, it finds that the volatility proxy affects the statistical loss functions’ ability to discriminate between forecasts in tests of predictive ability. These findings deepen our understanding of how to choose between competing multivariate volatility forecasts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to provide a summary description of the doctoral thesis investigating the field of project management (PM) deployment. Researchers will be informed of the current contributions within this topic and of the possible further investigations and researches. The decision makers and practitioners will be aware of a set of tools addressing the PM deployment with new perspectives. Design/methodology/approach – Research undertaken with the thesis is based on quantitative methods using time series statistics (time distance analysis) and comparative and correlation analysis aimed to better define and understand the PM deployment within and between countries or groups. Findings – The results suggest a project management deployment index (PMDI) to objectively measure the PM deployment based on the concept of certification. A proposed framework to empirically benchmark the PM deployment between countries by integrating the PMDI time series with the two dimensional comparative analysis of Sicherl. The correlation analysis within Hoftsede cultural framework shows the impact of the national culture dimensions on the PM deployment. The forecasting model shows a general continual growth trend of the PM deployment, with continual increase in the time distance between the countries. Research limitations/implications – The PM researchers are offered an empirical quantification on which they can construct further investigations and understanding of this phenomenon. The number of possible units that can be studied offers wide possibilities to replicate the thesis work. New researches can be undertaken to investigate further the contribution of other social or economical indicators, or to refine and enrich the definition of the PMDI indicator. Practical implications – These results have important implications on the PM deployment approaches. The PMDI measurements and time series comparisons facilitate considerably the measurement and benchmarking between the units (e.g. countries) and against targets, while the readiness setting of the studied unit (in terms of development and cultural levels) impacts the PM deployment within this country. Originality/value – This paper provides a summary of cutting-edge research work in the studied field of PM deployment and a link to the published works that researchers can use to help them understand the thesis research as well as how it can be extended.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This book represents a landmark effort to probe and analyze the theory and empirics of designing water disaster management policies. It consists of seven chapters that examine, in-depth and comprehensively, issues that are central to crafting effective policies for water disaster management. The authors use historical surveys, institutional analysis, econometric investigations, empirical case studies, and conceptual-theoretical discussions to clarify and illuminate the complex policy process. The specific topics studied in this book include a review and analysis of key policy areas and research priority areas associated with water disaster management, community participation in disaster risk reduction, the economics and politics of ‘green’ flood control, probabilistic flood forecasting for flood risk management, polycentric governance and flood risk management, drought management with the aid of dynamic inter-generational preferences, and how social resilience can inform SA/SIA for adaptive planning for climate change in vulnerable areas. A unique feature of this book is its analysis of the causes and consequences of water disasters and efforts to address them successfully through policy-rich, cross-disciplinary and transnational papers. This book is designed to help enrich the sparse discourse on water disaster management policies and galvanize water professionals to craft creative solutions to tackle water disasters efficiently, equitably, and sustainably. This book should also be of considerable use to disaster management professionals, in general, and natural resource policy analysts.