931 resultados para flip-chip


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Solder paste is the most important strategic bonding material used in the assembly of surface mount devices in electronic industries. It is known to exhibit a thixotropic behavior, which is recognized by the decrease in apparent viscosity of paste material with time when subjected to a constant shear rate. The proper characterization of this time-dependent rheological behavior of solder pastes is crucial for establishing the relationships between the pastes structure and flow behavior; and for correlating the physical parameters with paste printing performance. In this article, we present a novel method which has been developed for characterizing the time-dependent and non-Newtonian rheological behavior of solder pastes and flux mediums as a function of shear rates. We also present results of the study of the rheology of the solder pastes and flux mediums using the structural kinetic modeling approach, which postulates that the network structure of solder pastes breaks down irreversibly under shear, leading to time and shear-dependent changes in the flow properties. Our results show that for the solder pastes used in the study, the rate and extent of thixotropy was generally found to increase with increasing shear rate. The technique demonstrated in this study has wide utility for R&D personnel involved in new paste formulation, for implementing quality control procedures used in solder-paste manufacture and packaging; and for qualifying new flip-chip assembly lines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La miniaturització de la industria microelectrònica és un fet del tot inqüestionables i la tecnologia CMOS no n'és una excepció. En conseqüència la comunitat científica s'ha plantejat dos grans reptes: En primer lloc portar la tecnologia CMOS el més lluny possible ('Beyond CMOS') tot desenvolupant sistemes d'altes prestacions com microprocessadors, micro - nanosistemes o bé sistemes de píxels. I en segon lloc encetar una nova generació electrònica basada en tecnologies totalment diferents dins l'àmbit de les Nanotecnologies. Tots aquests avanços exigeixen una recerca i innovació constant en la resta d'àrees complementaries com són les d'encapsulat. L'encapsulat ha de satisfer bàsicament tres funcions: Interfície elèctrica del sistema amb l'exterior, Proporcionar un suport mecànic al sistema i Proporcionar un camí de dissipació de calor. Per tant, si tenim en compte que la majoria d'aquests dispositius d'altes prestacions demanden un alt nombre d'entrades i sortides, els mòduls multixip (MCMs) i la tecnologia flip chip es presenten com una solució molt interessant per aquests tipus de dispositiu. L'objectiu d'aquesta tesi és la de desenvolupar una tecnologia de mòduls multixip basada en interconnexions flip chip per a la integració de detectors de píxels híbrids, que inclou: 1) El desenvolupament d'una tecnologia de bumping basada en bumps de soldadura Sn/Ag eutèctics dipositats per electrodeposició amb un pitch de 50µm, i 2) El desenvolupament d'una tecnologia de vies d'or en silici que permet interconnectar i apilar xips verticalment (3D packaging) amb un pitch de 100µm. Finalment aquesta alta capacitat d'interconnexió dels encapsulats flip chip ha permès que sistemes de píxels tradicionalment monolítics puguin evolucionar cap a sistemes híbrids més compactes i complexes, i que en aquesta tesi s'ha vist reflectit transferint la tecnologia desenvolupada al camp de la física d'altes energies, en concret implantant el sistema de bump bonding d'un mamògraf digital. Addicionalment s'ha implantat també un dispositiu detector híbrid modular per a la reconstrucció d'imatges 3D en temps real, que ha donat lloc a una patent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Technological developments in biomedical microsystems are opening up new opportunities to improve healthcare procedures. Swallowable diagnostic capsules are an example of this. In this paper, a diagnostic capsule technology is described based on direct-access sensing of the Gastro Intestinal (GI) fluids throughout the GI tract. The objective of this paper is two-fold: i) develop a packaging method for a direct access sensor, ii) develop an encapsulation method to protect the system electronics. The integrity of the interconnection after sensor packaging and encapsulation is correlated to its reliability and thus of importance. The zero level packaging of the sensor was achieved by using a so called Flip Chip Over Hole (FCOH) method. This allowed the fluidic sensing media to interface with the sensor, while the rest of the chip including the electrical connections can be insulated effectively. Initial tests using Anisotropic Conductive Adhesive (ACA) interconnect for the FCOH demonstrated good electrical connections and functionality of the sensor chip. Also a preliminary encapsulation trial of the flip chipped sensor on a flexible test substrate has been carried out and showed that silicone encapsulation of the system is a viable option.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The future generation of modern illumination should not only be cheap and highly efficient, but also demonstrate high quality of light, light which allows better color differentiation and fidelity. Here we are presenting a novel approach to create a white solid-state light source providing ultimate color rendition necessary for a number of applications. The proposed semi-hybrid device combines a monolithic blue-cyan light emitting diode (MBC LED) with a green-red phosphor mixture. It has shown a superior color rendering index (CRI), 98.6, at correlated color temperature of around 3400 K. The MBC LED epi-structure did not suffer from the efficiency reduction typical for monolithic multi-color emitters and was implemented in the two most popular chip designs: “epi-up” and “flip-chip”. Redistribution of the blue and cyan band amplitudes in the white-light emission spectrum, using the operating current, is found to be an effective tool for fine tuning the color characteristics. (Figure presented.).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, two ideal formation models of serrated chips, the symmetric formation model and the unilateral right-angle formation model, have been established for the first time. Based on the ideal models and related adiabatic shear theory of serrated chip formation, the theoretical relationship among average tooth pitch, average tooth height and chip thickness are obtained. Further, the theoretical relation of the passivation coefficient of chip's sawtooth and the chip thickness compression ratio is deduced as well. The comparison between these theoretical prediction curves and experimental data shows good agreement, which well validates the robustness of the ideal chip formation models and the correctness of the theoretical deducing analysis. The proposed ideal models may have provided a simple but effective theoretical basis for succeeding research on serrated chip morphology. Finally, the influences of most principal cutting factors on serrated chip formation are discussed on the basis of a series of finite element simulation results for practical advices of controlling serrated chips in engineering application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Malignant pleural mesothelioma (MPM) is a rapidly fatal malignancy that is increasing in incidence. The caspase 8 inhibitor FLIP is an anti-apoptotic protein over-expressed in several cancer types including MPM. The histone deacetylase (HDAC) inhibitor Vorinostat (SAHA) is currently being evaluated in relapsed mesothelioma. We examined the roles of FLIP and caspase 8 in regulating SAHA-induced apoptosis in MPM. Methods: The mechanism of SAHA-induced apoptosis was assessed in 7 MPM cell lines and in a multicellular spheroid model. SiRNA and overexpression approaches were used, and cell death was assessed by flow cytometry, Western blotting and clonogenic assays. Results: RNAi-mediated FLIP silencing resulted in caspase 8-dependent apoptosis in MPM cell line models. SAHA potently down-regulated FLIP protein expression in all 7 MPM cell lines and in a multicellular spheroid model of MPM. In 6/7 MPM cell lines, SAHA treatment resulted in significant levels of apoptosis induction. Moreover, this apoptosis was caspase 8-dependent in all six sensitive cell lines. SAHA-induced apoptosis was also inhibited by stable FLIP overexpression. In contrast, down-regulation of HR23B, a candidate predictive biomarker for HDAC inhibitors, significantly inhibited SAHA-induced apoptosis in only 1/6 SAHA-sensitive MPM cell lines. Analysis of MPM patient samples demonstrated significant inter-patient variations in FLIP and caspase 8 expressions. In addition, SAHA enhanced cisplatin-induced apoptosis in a FLIP-dependent manner. Conclusions: These results indicate that FLIP is a major target for SAHA in MPM and identifies FLIP, caspase 8 and associated signalling molecules as candidate biomarkers for SAHA in this disease. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We found that procaspase 8 was overexpressed in non-small-cell lung cancers (NSCLCs) compared with matched normal tissues. The caspase 8 inhibitor FLICE-inhibitory protein (FLIP) was also overexpressed in the majority of NSCLCs. Silencing FLIP induced caspase 8 activation and apoptosis in NSCLC cell lines, but not in normal lung cell lines. Apoptosis induced by FLIP silencing was mediated by the TRAIL death receptors DR4 and DR5, but was not dependent on ligation of the receptors by TRAIL. Furthermore, the apoptosis induced by FLIP silencing was dependent on the overexpression of procaspase 8 in NSCLC cells. Moreover, in NSCLC cells, but not in normal cells, FLIP silencing induced co-localization of DR5 and ceramide, and disruption of this co-localization abrogated apoptosis. FLIP silencing supra-additively increased TRAIL-induced apoptosis of NSCLC cells; however, normal lung cells were resistant to TRAIL, even when FLIP was silenced. Importantly, FLIP silencing sensitized NSCLC cells but not normal cells to chemotherapy in vitro, and silencing FLIP in vivo retarded NSCLC xenograft growth and enhanced the anti-tumour effects of cisplatin. Collectively, our results suggest that due to frequent procaspase 8 overexpression, NSCLCs may be particularly sensitive to FLIP-targeted therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-small cell lung carcinoma remains by far the leading cause of cancer-related deaths worldwide. Overexpression of FLIP, which blocks the extrinsic apoptotic pathway by inhibiting caspase-8 activation, has been identified in various cancers. We investigated FLIP and procaspase-8 expression in NSCLC and the effect of HDAC inhibitors on FLIP expression, activation of caspase-8 and drug resistance in NSCLC and normal lung cell line models. Immunohistochemical analysis of cytoplasmic and nuclear FLIP and procaspase-8 protein expression was carried out using a novel digital pathology approach. Both FLIP and procaspase-8 were found to be significantly overexpressed in tumours, and importantly, high cytoplasmic expression of FLIP significantly correlated with shorter overall survival. Treatment with HDAC inhibitors targeting HDAC1-3 downregulated FLIP expression predominantly via post-transcriptional mechanisms, and this resulted in death receptor- and caspase-8-dependent apoptosis in NSCLC cells, but not normal lung cells. In addition, HDAC inhibitors synergized with TRAIL and cisplatin in NSCLC cells in a FLIP- and caspase-8-dependent manner. Thus, FLIP and procaspase-8 are overexpressed in NSCLC, and high cytoplasmic FLIP expression is indicative of poor prognosis. Targeting high FLIP expression using HDAC1-3 selective inhibitors such as entinostat to exploit high procaspase-8 expression in NSCLC has promising therapeutic potential, particularly when used in combination with TRAIL receptor-targeted agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RATIONALE: Polymer-based surface coatings in outdoor applications experience accelerated degradation due to exposure to solar radiation, oxygen and atmospheric pollutants. These deleterious agents cause undesirable changes to the aesthetic and mechanical properties of the polymer, reducing its lifetime. The use of antioxidants such as hindered amine light stabilisers (HALS) retards these degradative processes; however, mechanisms for HALS action and polymer degradation are poorly understood. METHODS: Detection of the HALS TINUVINW123 (bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate) and the polymer degradation products directly from a polyester-based coil coating was achieved by liquid extraction surface analysis (LESA) coupled to a triple quadrupole QTRAPW 5500 mass spectrometer. The detection of TINUVINW123 and melamine was confirmed by the characteristic fragmentation pattern observed in LESA-MS/MS spectra that was identical to that reported for authentic samples. RESULTS: Analysis of an unstabilised coil coating by LESA-MS after exposure to 4 years of outdoor field testing revealed the presence of melamine (1,3,5-triazine-2,4,6-triamine) as a polymer degradation product at elevated levels. Changes to the physical appearance of the coil coating, including powder-like deposits on the coating's surface, were observed to coincide with melamine deposits and are indicative of the phenomenon known as polymer ' blooming'. CONCLUSIONS: For the first time, in situ detection of analytes from a thermoset polymer coating was accomplished without any sample preparation, providing advantages over traditional extraction-analysis approaches and some contemporary ambient MS methods. Detection of HALS and polymer degradation products such as melamine provides insight into the mechanisms by which degradation occurs and suggests LESA-MS is a powerful new tool for polymer analysis. Copyright (C) 2012 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a novel method of fabricating atom chips that are well suited to the production and manipulation of atomic Bose–Einstein condensates. Our chip was created using a silver foil and simple micro-cutting techniques without the need for photolithography. It can sustain larger currents than conventional chips, and is compatible with the patterning of complex trapping potentials. A near pure Bose–Einstein condensate of 4 × 104 87Rb atoms has been created in a magnetic microtrap formed by currents through wires on the chip. We have observed the fragmentation of atom clouds in close proximity to the silver conductors. The fragmentation has different characteristic features to those seen with copper conductors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The focus in this article is how the extensive use of fly-in fly-out (FIFO) working arrangements in the Western Australian resources sector has an impact directly and indirectly on smaller firms and their ability to recruit workers in remote locations. We argue that the growth of FIFO working arrangements has disadvantaged smaller resource-sector firms by increasing their employment costs and decreasing their ability to attract skilled workers. As a result, smaller resource-sector firms are recruiting skilled workers on 457 visas to secure their business stability and growth, despite the complexity, costs, and risks involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Circulating tumor cells (CTCs) are found in the blood of patients with cancer. Although these cells are rare, they can provide useful information for chemotherapy. However, isolation of these rare cells from blood is technically challenging because they are small in numbers. An integrated microfluidic chip, dubbed as CTC chip, was designed and fabricated for conducting tumor cell isolation. As CTCs usually show multidrug resistance (MDR), the effect of MDR inhibitors on chemotherapeutic drug accumulation in the isolated single tumor cell is measured. As a model of CTC isolation, human prostate tumor cells were mixed with mouse blood cells and the labelfree isolation of the tumor cells was conducted based on cell size difference. The major advantages of the CTC chip are the ability for fast cell isolation, followed by multiple rounds of single-cell measurements, suggesting a potential assay for detecting the drug responses based on the liquid biopsy of cancer patients.