985 resultados para flexural properties


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. To evaluate bacterial growth inhibition, mechanical properties, and compound release rate and stability of copolymers incorporated with anthocyanin (ACY; Vaccinium macrocarpon). Methods. Resin samples were prepared (Bis-GMA/TEGDMA at 70/30 mol%) and incorporated with 2 w/w% of either ACY or chlorhexidine (CHX), except for the control group. Samples were individually immersed in a bacterial culture (Streptococcus mutans) for 24 h. Cell viability (n = 3) was assessed by counting the number of colony forming units on replica agar plates. Flexural strength (FS) and elastic modulus (E) were tested on a universal testing machine (n = 8). Compound release and chemical stability were evaluated by UV spectrophotometry and (1)H NMR (n = 3). Data were analyzed by one-way ANOVA and Tukey's test ( α = 0.05). Results. Both compounds inhibited S. mutans growth, with CHX being most effective (P < 0.05). Control resin had the lowest FS and E values, followed by ACY and CHX, with statistical difference between control and CHX groups for both mechanical properties (P < 0.05). The 24 h compound release rates were ACY: 1.33 μg/mL and CHX: 1.92 μg/mL. (1)H NMR spectra suggests that both compounds remained stable after being released in water. Conclusion. The present findings indicate that anthocyanins might be used as a natural antibacterial agent in resin based materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the study was to verify the effects of a number of materials' parameters (crystalline content; Young's modulus, E; biaxial flexure strength, sigma(i); Vickers hardness, VH; fracture toughness, K-Ic; fracture surface energy, gamma(f); and index of brittleness, B) on the brittleness of dental ceramics. Five commercial dental ceramics with different contents of glass phase and crystalline particles were studied: a vitreous porcelain (VM7/V), a porcelain with 16 vol% leucite particles (d.Sign/D), a glass-ceramic with 29 vol% leucite particles (Empress/E1), a glass-ceramic with 58 vol% lithium-disilicate needle-like particles (Empress 2/E2), and a glass-infiltrated alumina composite with 65 vol% crystals (In-Ceram Alumina/IC). Discs were constructed according to manufacturers' instructions, ground and polished to final dimensions (12 mm x 1.1 mm). Elastic constants were determined by ultrasonic pulse-echo method. sigma(i) was determined by piston-on-3-balls method in inert condition. VH was determined using 19.6 N load and K-Ic was determined by indentation strength method. gamma(f) was calculated from the Griffith-Irwin relation and B by the ratio of HV to K-Ic. IC and E2 showed higher values of sigma(i), E, K-Ic and gamma(f), and lower values of B compared to leucite-based glass-ceramic and porcelains. Positive correlations were observed for sigma(i) versus K-Ic, and K-Ic versus E-1/2, however, E did not show relationship with HV and B. The increase of crystalline phase content is beneficial to decrease the brittleness of dental ceramics by means of both an increase in fracture surface energy and a lowering in index of brittleness. (C) 2012 Elsevier Ltd and Techna Group Sri. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The flexural strength and the elastic modulus of acrylic resins, Dencor, Duralay and Trim Plus II, were evaluated with and without the addition of silanised glass fibre. Materials and methods: To evaluate the flexural strength and elastic modulus, 60 test specimens were fabricated with the addition of 10% ground silanised glass fibres for the experimental group, and 60 without the incorporation of fibres, for the control group, with 20 test specimens being made of each commercial brand of resin (Dencor, Duralay and Trim Plus II) for the control group and experimental group. After the test specimens had been completed, the flexural strength and elastic modulus tests were performed in a universal testing device, using the three-point bending test. For the specimens without fibres the One-Way Analysis of Variance and the complementary Tukey test were used, and for those with fibres it was not normal, so that the non-parametric Mann-Whitney test was applied. Results: For the flexural strength test, there was no statistical difference (p > 0.05) between each commercial brand of resin without fibres [Duralay 84.32(+/- 8.54), Trim plus 85.39(+/- 6.74), Dencor 96.70(+/- 6.52)] and with fibres (Duralay 87.18, Trim plus 88.33, Dencor 98.10). However, for the elastic modulus, there was statistical difference (p > 0.01) between each commercial brand of resin without fibres [Duralay 2380.64 (+/- 168.60), Trim plus 2740.37(+/- 311.74), Dencor 2595.42(+/- 261.22)] and with fibres (Duralay 3750.42, Trim plus 3188.80, Dencor 3400.75). Conclusion: The result showed that the incorporation of fibre did not interfere in the flexural strength values, but it increased the values for the elastic modulus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, layered manufacturing (LM) processes have begun to progress from rapid prototyping techniques towards rapid manufacturing methods, where the objective is now to produce finished components for potential end use in a product (Caulfield et al., 2007). LM is especially promising for the fabrication of specific need, low volume products such as replacement parts for larger systems. This trend accentuates the need for a thorough understanding of the associated mechanical properties and the resulting behavior of parts produced by layered methods. Not only must the base material be durable, but the mechanical properties of the layered components must be sufficient to meet in-service loading and operational requirements, and be reasonably comparable to parts produced by more traditional manufacturing techniques. This chapter presents the details of a study completed to quantitatively analyze the potential of fused deposition modelling to fully evolve into a rapid manufacturing tool. The project objective is to develop an understanding of the dependence of the mechanical properties of FDM parts on raster orientation and to assess whether these parts are capable of maintaining their integrity while under service loading. The study examines the effect of fiber orientation, i.e. the direction of the polymer beads relative to the loading direction of the part, on a variety of important mechanical properties of ABS components fabricated by fused deposition modeling. Tensile, compressive, flexural, impact, and fatigue strength properties of FDM specimens are examined, evaluated, and placed in context in comparison with the properties of injection molded ABS parts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SUMMARY The aim of this study was to evaluate the influence of surface roughness on surface hardness (Vickers; VHN), elastic modulus (EM), and flexural strength (FLS) of two computer-aided design/computer-aided manufacturing (CAD/CAM) ceramic materials. One hundred sixty-two samples of VITABLOCS Mark II (VMII) and 162 samples of IPS Empress CAD (IPS) were ground according to six standardized protocols producing decreasing surface roughnesses (n=27/group): grinding with 1) silicon carbide (SiC) paper #80, 2) SiC paper #120, 3) SiC paper #220, 4) SiC paper #320, 5) SiC paper #500, and 6) SiC paper #1000. Surface roughness (Ra/Rz) was measured with a surface roughness meter, VHN and EM with a hardness indentation device, and FLS with a three-point bending test. To test for a correlation between surface roughness (Ra/Rz) and VHN, EM, or FLS, Spearman rank correlation coefficients were calculated. The decrease in surface roughness led to an increase in VHN from (VMII/IPS; medians) 263.7/256.5 VHN to 646.8/601.5 VHN, an increase in EM from 45.4/41.0 GPa to 66.8/58.4 GPa, and an increase in FLS from 49.5/44.3 MPa to 73.0/97.2 MPa. For both ceramic materials, Spearman rank correlation coefficients showed a strong negative correlation between surface roughness (Ra/Rz) and VHN or EM and a moderate negative correlation between Ra/Rz and FLS. In conclusion, a decrease in surface roughness generally improved the mechanical properties of the CAD/CAM ceramic materials tested. However, FLS was less influenced by surface roughness than expected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this project we developed conductive thermoplastic resins by adding varying amounts of three different carbon fillers: carbon black (CB), synthetic graphite (SG) and multi-walled carbon nanotubes (CNT) to a polypropylene matrix for application as fuel cell bipolar plates. This component of fuel cells provides mechanical support to the stack, circulates the gases that participate in the electrochemical reaction within the fuel cell and allows for removal of the excess heat from the system. The materials fabricated in this work were tested to determine their mechanical and thermal properties. These materials were produced by adding varying amounts of single carbon fillers to a polypropylene matrix (2.5 to 15 wt.% Ketjenblack EC-600 JD carbon black, 10 to 80 wt.% Asbury Carbon's Thermocarb TC-300 synthetic graphite, and 2.5 to 15 wt.% of Hyperion Catalysis International's FIBRILTM multi-walled carbon nanotubes) In addition, composite materials containing combinations of these three fillers were produced. The thermal conductivity results showed an increase in both through-plane and in-plane thermal conductivities, with the largest increase observed for synthetic graphite. The Department of Energy (DOE) had previously set a thermal conductivity goal of 20 W/m·K, which was surpassed by formulations containing 75 wt.% and 80 wt.% SG, yielding in-plane thermal conductivity values of 24.4 W/m·K and 33.6 W/m·K, respectively. In addition, composites containing 2.5 wt.% CB, 65 wt.% SG, and 6 wt.% CNT in PP had an in–plane thermal conductivity of 37 W/m·K. Flexural and tensile tests were conducted. All composite formulations exceeded the flexural strength target of 25 MPa set by DOE. The tensile and flexural modulus of the composites increased with higher concentration of carbon fillers. Carbon black and synthetic graphite caused a decrease in the tensile and flexural strengths of the composites. However, carbon nanotubes increased the composite tensile and flexural strengths. Mathematical models were applied to estimate through-plane and in-plane thermal conductivities of single and multiple filler formulations, and tensile modulus of single-filler formulations. For thermal conductivity, Nielsen's model yielded accurate thermal conductivity values when compared to experimental results obtained through the Flash method. For prediction of tensile modulus Nielsen's model yielded the smallest error between the predicted and experimental values. The second part of this project consisted of the development of a curriculum in Fuel Cell and Hydrogen Technologies to address different educational barriers identified by the Department of Energy. By the creation of new courses and enterprise programs in the areas of fuel cells and the use of hydrogen as an energy carrier, we introduced engineering students to the new technologies, policies and challenges present with this alternative energy. Feedback provided by students participating in these courses and enterprise programs indicate positive acceptance of the different educational tools. Results obtained from a survey applied to students after participating in these courses showed an increase in the knowledge and awareness of energy fundamentals, which indicates the modules developed in this project are effective in introducing students to alternative energy sources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the austral summer of 2006/7 the ANDRILL MIS (ANtarctic geological DRILLing- McMurdo Ice Shelf) project recovered a 1285 m sediment core from beneath the Ross Ice Shelf near Hut Point Peninsula, Ross Island, Antarctica in a flexural moat associated with the volcanic loading of Ross Island. Contained within the upper ~600 m of this core are sediments recording 38 glacial to interglacial cycles of Early Pliocene to Pleistocene time, including 13 discrete diatomite units (DU). The longest of these, DU XI, is ~76 m thick, contains two distinct unconformities marked by layers of volcanic brecciated sands, and has been assigned an Early to Mid-Pliocene age (5-3 Ma). A detailed record (avg. sample spacing of 33 cm) of the siliceous microfossil assemblages have been generated for DU XI and used in conjunction with geochemical and sedimentological data to subdivide DU XI into four discrete subunits of continuous sedimentation. Within each unit, changes in diatom assemblages have been correlated with the d18O record, providing a temporal resolution as high as 600 yr, and allowing for the construction of a detailed age model and calculation of associated sediment accumulation rates within DU XI. Results indicate a productivity-dominated sedimentary record with higher sediment accumulation rates containing a greater proportion of hemipelagic mud occurring during relatively cool periods and reduced accumulation during warmer intervals. This implies that even during periods of substantial warmth, Milankovitch-paced changes in Antarctic ice volume can be linked to ecological changes recorded as shifts in diatom assemblages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laboratory compressional wave (Vp) and shear wave (Vs) velocities were measured as a function of confining pressure for the gabbros from Hole 735B and compared to results from Leg 118. The upper 500 m of the hole has a Vp mean value of 6895 m/s measured at 200 MPa, and at 500 meters below seafloor (mbsf), Vp measurements show a mean value of 7036 m/s. Vs mean values in the same intervals are 3840 m/s and 3857 m/s, respectively. The mean Vp and Vs values obtained from log data in the upper 600 m are 6520 and 3518 m/s, respectively. These results show a general increase in velocity with depth and the velocity gradients estimate an upper mantle depth of 3.32 km. This value agrees with previous work based on dredged samples and inversion of rare element concentrations in basalts dredged from the conjugate site to the north of the Atlantis Bank. Laboratory measurements show Vp anisotropy ranging between 0.4% and 8.8%, with the majority of the samples having values less than 3.8%. Measurements of velocity anisotropy seem to be associated with zones of high crystal-plastic deformation with predominant preferred mineral orientations of plagioclase, amphiboles, and pyroxenes. These findings are consistent with results on gabbros from the Hess Deep area and suggest that plastic deformation may play an important role in the seismic properties of the lower oceanic crust. In contrast to ophiolite studies, many of the olivine gabbros show a small degree of anisotropy. Log derived Vs anisotropy shows an average of 5.8% for the upper 600 m of Hole 735B and tends to decrease with depth where the overburden pressure and the age of the crustal section suggests closure of cracks and infilling of fractures by alteration minerals. Overall the results indicate that the average shear wave splitting in Hole 735B might be influenced by preferred structural orientations and the average value of shear wave splitting may not be a maximum because structural dips are <90°. The maximum fast-wave orientation values could be influenced by structural features striking slightly oblique to this orientation or by near-field stress concentrations. However, flexural wave dispersion analyses have not been performed to confirm this hypothesis or to indicate to what extent the near-field stresses may be influencing shear wave propagation. Acoustic impedance contrasts calculated from laboratory and logging data were used to generate synthetic seismograms that aid in the interpretation of reflection profiles. Several prominent reflections produced by these calculations suggest that Fe-Ti oxides and shear zones may contribute to the reflective nature of the lower oceanic crust. Laboratory velocity attenuation (Q) measurements from below 500 m have a mean value of 35.1, which is consistent with previous vertical seismic profile (VSP) and laboratory measurements on the upper 500 m.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel carbon fiber (CF)-reinforced poly(phenylene sulphide) (PPS) laminates incorporating inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles were prepared via melt-blending and hot-press processing. The influence of the IF-WS2 on the morphology, thermal, mechanical and tribological properties of PPS/CF composites was investigated. Efficient nanoparticle dispersion within the matrix was attained without using surfactants. A progressive rise in thermal stability was found with increasing IF-WS2 loading, as revealed by thermogravimetric analysis. The addition of low nanoparticle contents retarded the crystallization of the matrix, whereas concentrations equal or higher than 1.0 wt% increased both the crystallization temperature and degree of crystallinity compared to those of PPS/CF. Mechanical tests indicated that with only 1.0 wt% IF-WS2 the flexural modulus and strength of PPS/CF improved by 17 and 14%, respectively, without loss in toughness, ascribed to a synergistic effect between the two fillers. A significant enhancement in the storage modulus and glass transition temperature was also observed. Moreover, the wear rate and coefficient of friction strongly decreased, attributed to the lubricant role of the IF-WS2 combined with their reinforcing effect. These inorganic nanoparticles show great potential to improve the mechanical and tribological properties of conventional thermoplastic/CF composites for structural applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Directionally solidified Al2O3–Er3Al5O12–ZrO2 eutectic rods were processed using the laser floating zone method at growth rates of 25, 350and 750 mm/h to obtain microstructures with different domain size. The mechanical properties were investigated as a function of the processing rate. The hardness, 15.6 GPa, and the fracture toughness, 4 MPa m1/2, obtained from Vickers indentation at room temperature were practically independent of the size of the eutectic phases. However, the flexural strength increased as the domain size decreased, reaching outstanding strength values close to 3 GPa in the samples grown at 750 mm/h. A high retention of the flexural strength was observed up to 1500 K in the materials processed at 25 and 350 mm/h, while superplastic behaviour was observed at 1700 K in the eutectic rods solidified at the highest rate of 750 mm/h

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The changes in mechanical properties of portland cement mortars due to the addition of carbon fibres (CF) to the mix have been studied. Compression and flexural strengths have been determined in relation to the amount of fibres added to the mix, water/binder ratio, curing time and porosity. Additionally, the corrosion level of reinforcing steel bars embedded in portland cement mortars containing CF and silica fume (SF) have also been investigated and reinforcing steel corrosion rates have been determined. As a consequence of the large concentration of oxygen groups in CF surface, a good interaction between the CF and the water of the mortar paste is to be expected. A CF content of 0.5% of cement weight implies an optimum increase in flexural strength and an increase in embedded steel corrosion.