84 resultados para fleas


Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a consequence of the deleterious effects of parasites on host fitness, hosts have evolved responses to minimize the negative impact of parasite infection. Facultative parasite-induced responses are favoured when the risk of infection is unpredictable and host responses are costly. In vertebrates, induced responses are generally viewed as being adaptive, although evidence for fitness benefits arising from these responses in natural host populations is lacking. Here we provide experimental evidence for direct reproductive benefits in flea-infested great tit nests arising from exposure during egg production to fleas. In the experiment we exposed a group of birds to fleas during egg laying (the exposed group), thereby allowing for induced responses, and kept another group free of parasites (the unexposed group) over the same time period. At the start of incubation, we killed the parasites in both groups and all nests were reinfested with fleas. If induced responses occur and are adaptive, we expect that birds of the exposed group mount earlier responses and achieve higher current reproductive success than birds in the unexposed group. In agreement with this prediction, our results show that birds with nests infested during egg-laying have (i) fewer breeding failures and raise a higher proportion of hatchlings to hedging age; () offspring that reach greater body mass, grow longer feathers, and hedge earlier, and (iii) a higher number of recruits and first-year grandchildren than unexposed birds. Flea reproduction and survival did not differ significantly between the two treatments. These results provide the first evidence for the occurrence and the adaptiveness of induced responses against a common ectoparasite in a wild population of vertebrates. [References: 50]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Egg yolks contain carotenoids that protect biological molecules against free-radical damage and promote maturation of the immune system. Availability of carotenoids to birds is often limited. Trade-offs can thus arise in the allocation of carotenoids to different physiological functions, and mothers may influence the immunocompetence of nestlings by modulating the transfer of carotenoid to the yolk.;2. In the great tit Parus major, we experimentally manipulated the dietary supply of carotenoid to mothers, and partially cross-fostered hatchlings to investigate the effect of an increased availability of carotenoids during egg laying on immunocompetence of nestlings.;3. In addition, we infested half of the nests with hen fleas Ceratophyllus gallinae to investigate the relationship between carotenoid availability, resistance to ectoparasites and immunocompetence.;4. We found that the procedure of cross-fostering can reduce the immune response of nestlings, but this effect can be compensated by the maternally transferred carotenoids. Cross-fostered nestlings of carotenoid-supplemented females show a similar immune response to non-cross-fostered nestlings, while cross-fostered nestlings of control females mounted a weaker cell-mediated immune response. This suggests that yolk carotenoids may help nestlings to cope with stress, for example the one generated by cross-fostering and/or they may enhance nestling competitiveness.;5. There was no statistically significant interaction between parasite and carotenoid treatments, as would be expected if carotenoids helped nestlings to fight parasites. Under parasite pressure, however, lighter nestlings raised a lower immune response, while the immune response was only weakly correlated with body mass in uninfested nests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Parasites might preferentially feed on hosts in good nutritional condition as such hosts provide better resources for the parasites' own growth, survival and reproduction. However, hosts in prime condition are also better able to develop costly immunological or physiological defence mechanisms, which in turn reduce the parasites' reproductive success. The interplay between host condition, host defence and parasite fitness will thus play an important part in the dynamics of host-parasite systems.;2. In a 2 x 2 design, we manipulated both the access to food in great tit Parus major broods and the exposure of the nestlings to hen fleas Ceratophyllus gallinae, a common ectoparasite of hole-breeding birds. We subsequently investigated the role of manipulated host condition, host immunocompetence, and experimentally induced host defence in nestlings on the reproductive success of individual hen flea females.;3. The food supplementation of the nestlings significantly influenced the parasites' reproductive success. Female fleas laid significantly more eggs when feeding on food-supplemented hosts.;4. Previous parasite exposure of the birds affected the reproductive success of fleas. However, the impact of this induced host response on flea reproduction depended on the birds' natural level of immunocompetence, assessed by the phytohaemagglutinin (PHA) skin test. Flea fecundity significantly decreased with increasing PHA response of the nestlings in previously parasite-exposed broods. No relationship between flea fitness and host immunocompetence was, however, found in previously unexposed broods. The PHA response thus correlates with the nestlings' ability to mount immunological or physiological defence mechanisms against hen fleas. No significant interaction effect between early flea exposure and food supplementation on the parasites' reproductive success was found.;5. Our study shows that the reproductive success of hen fleas is linked to the hosts' food supply early in life and their ability to mount induced immunological or physiological defence mechanisms. These interactions between host quality and parasite fitness are likely to influence host preference, host choice and parasite virulence and thus the evolutionary dynamics in host-parasite systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Both predators and parasites can elicit behavioral and physiological responses in prey and hosts, respectively. These responses may involve the reallocation of resources and may thus limit each other. We investigated the effects of concurrent pre-laying exposure of great tit females (Parus major) to both a simulated predation risk and a nest-based ectoparasite, the hen flea (Ceratophyllus gallinae), on nestling growth and development. We manipulated perceived predation risk using models and vocalizations of sparrowhawks (Accipiter nisus). At the start of incubation, we swapped whole clutches between treated and untreated nests to separate pre-laying maternal effects from posthatching effects. Since costs and benefits of maternal responses to parasites need to be assessed under parasite pressure, we infested half of the rearing nests with hen fleas. Parasites had negative effects on mass gain and wing growth, both via maternal effects and via direct exposure of nestlings, whereas maternal predation risk had no significant effect. The interaction between predator and parasite treatments was not significant and, thus, suggests the absence of a trade-off between the 2 stressors operating at the level of maternal effects. Alternatively, the complexity of the design, despite a relatively large sample size, may have limited the power for detection of this expected trade-off.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

First published in 1911; this edition adds an afterword.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An outbreak of Tunga Penetrans (Jigger Flea) infestation affecting a number of villages near to a Central Hospital in Malawi is described. Due to the large number of affected individuals, high parasitic load, and extended duration of infection an alternative to the recommended approach of surgical removal of the flea was required. Benzyl benzoate paint and liquid paraffin had been used in local Primary Healthcare settings previously and topical treatment with antiparasitic agents has been advocated in the literature, particularly for severe infestation. Benzyl benzoate and liquid paraffin were applied topically to four adults with numerous jigger flea burrows, and their progress assessed regularly. After completion of 7 days of treatment patients noted that fleas were dislodging spontaneously, and that embedded parasites had not increased in size to the same extent that untreated fleas had in previous infestations. Following confirmation of the viability of its implementation in a resource-poor setting, this treatment regimen has subsequently been adopted by the local branch of the District Health Office for distribution to infected communities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La presente investigación se planteó reemplazar el uso de insecticidas sintéticos, formulando un champú bioinsecticida de aplicación canina mediante la acción biocida del aceite esencial deAmbrosia arborescens Mill (Altamisa). La planta se recolectó en las laderas del rio Tomebamba, cercanas al Campus Balzay de la Universidad de Cuenca Parroquia San Joaquín. La recolección se realizó durante los meses de Enero a Marzo del 2016. El desarrollo y formulación del producto se realizó en el Laboratorio de Biotecnología, Facultad de Ciencias Químicas de la Universidad de Cuenca. La obtención del aceite esencial de A. arborescens se realizó mediante hidrodestilación por el método Clevenger, con un rendimiento del 0,14%. La actividad biocida se estableció en un ensayo “in vitro” ante el nematodo Panagrellus redivirus, determinándose la dosis letal (DL50) de 250 uL/mL. Debido a la moderada DL50y bajo rendimiento, se planteó como estrategia, determinar el DL50 del extracto orgánico de A. arborescens, el cual se obtuvo mediante una extracción con metanol, consiguiendo un rendimiento del 2 % y DL50de 31,25 uL/mL. De acuerdo estos resultados se procedió a realizar pruebas en pulgas de perros(Ctenocephalides canis) con el extracto de A. arborescens, estableciendo una efectividad del 100 % a la concentración de 46,875 mg/mL en el periodo de tiempo más corto, siendo esta la dosis aplicada para la formulación del champú. El extracto metanólico de A. arborescens presentó elevada actividad biocida, comparado con el aceite esencial. Esta sustancia activa es promisoria en la formulación de bioinsecticidas para mascotas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fleas, several aeroallergens as well as many food allergens are the most common allergenic sources for animals and frequent cause of allergic reactions with different target organs such as skin, eyes, and respiratory or digestive systems. Allergy diagnosis needs to follow well-established guidelines under clinical and laboratory approaches. Since 1980 with the Hanifin & Rajka’s criteria for the diagnosis of atopic dermatitis (AD) in humans, successive proposals have been developed to identify atopic dermatitis in dogs. A consensual plan was first proposed by Willemse in 1986 undergoing several modifications in 1994. Prélaud and colleagues made important changes to the plan in 1998 and it was further adjusted by Favrot in 2009. In 2010, this plan was approved by the International Task Force on Canine Atopic Dermatitis (CAD). It was subjected in 2015 to minor updates with regard to therapeutic options. To improve diagnostic accuracy by integrating the basic knowledge on sensitization development and allergen nature and diversity, allergen sources and implicated molecular allergens for animals should be clearly identified. As well as in human medicine, this molecular epidemiology concept is essential for the veterinary allergy diagnosis in the near future, standing as the basis of a component-resolved diagnosis (CRD). Besides current pharma- cotherapy, it will be highly relevant to increase the efficiency of the avoidance measures and specific immunotherapy. Clinical guidelines will lead to at least 80 % of positive diagnosis of atopy, but newer laboratory methods in veterinary medicine aiming to a more precise diagnosis and a better integration of the clinical/laboratory diagnostic course are needed. Allergoms identification for animals, from different allergen sources proteoms should become a priority in veterinary allergology, in order to allow the intended CRD, which is essential to understand the cross-reaction phenomena, allowing a more precise and possibly effective component-resolved immunotherapy (CRIT). Further research has been carried out for a better understanding of the interaction between allergic clinical condition and immune pathophysiology. As well as in human medicine, a deeper knowledge of the molecular immunological mechanisms in veterinary allergy — with their specific allergen triggers — will also provide the veterinary allergist with the necessary information to act more efficiently in the future.