839 resultados para fixed bed


Relevância:

60.00% 60.00%

Publicador:

Resumo:

对粘砂床面的薄层水流进行定床试验,研究了不同流量、坡度下薄层水流的水力学参数(流态、水深、流速及阻力系数)随坡度和流量的变化规律。结果表明:水流雷诺数Re随着坡度和流量的增大而增大,但Re主要是由流量决定的,坡度对Re的影响不大,水流流态基本上在过渡流区和紊流区;平均水深-单宽流量,流速-单宽流量,水流阻力系数-单宽流量均成很好的幂函数形式,平均水深和流速均随单宽流量的增大而增大,阻力系数随着单宽流量的增大而减小。

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A one-dimensional isothermal pseudo-homogeneous parallel flow model was developed for the methanol synthesis from CO2 in a silicone rubber/ceramic composite membrane reactor. The fourth-order Runge-Kutta method was adopted to simulate the process behaviors in the membrane reactor. How those parameters affect the reaction behaviors in the membrane reactor, such as Damkohler number Da, pressure ratio p(r), reaction temperature T, membrane separation factor alpha, membrane permeation parameter phi , as well as the non-uniform parameter of membrane permeation L-1, were discussed in detail. Parts of the theoretical results were tested and verified; the experimental results showed that the conversion of the main reaction in the membrane reactor increased by 22% against traditional fixed bed reactor, and the optimal non-uniform parameter of membrane permeation rate, L-1.opt ,does exist. (C) 2003 Elsevier B.V All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In our previous work, it was shown that LiLaNiO/gamma-Al2O3 was an excellent catalyst for partial oxidation of heptane to syngas in a fixed-bed reactor at high temperature and the selectivity of CO was about 93%. However, pure oxygen was used as the oxidant. We have developed a dense oxygen permeation membrane Ba0.5Sr0.5Co0.8Fe0.2O3 that can supply pure oxygen for the reaction. In this work, the membrane was combined with the catalyst LiLaNiO/gamma-Al2O3 in one rector for the partial oxidation of heptane that is typical component of gasoline. A good performance of the membrane reactor has been obtained, with 100% n-heptane conversion and >94% hydrogen selectivity at the optimized reaction conditions. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The transformation of olefin to aromatics over ZSM-5 catalysts with different K-loadings has been investigated both in a continuous flow fixed-bed reactor and in a pulse microreactor. Investigation of variation of olefin aromatization activity with K-loadings shows that strong acid sites are indispensable for the converting of olefin to aromatics. As intermediates of olefin aromatization process, butadiene and cyclopentene not only show much higher aromatization activity than mono-olefins, but also can be transformed into aromatics over relatively weak acid sites of K/ZSM-5. A proposal is put forward, stating that among all the steps experienced in olefins aromatization, the formation of diene or cycloolfin from mono-olefins through hydrogen transfer is the key step and can be catalyzed by strong acid sites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A metal ions (Ag, Bi, V, Mo) modified sol-gel method was used to prepare a mesoporous Ag0.01Bi0.85V0.54Mo0.45O4 catalytic membrane which was used in the selective oxidation of propane to acrolein. By optimizing the preparation parameters, a thin and perfect catalytically active membrane was successfully prepared. SEM results showed that the membrane thickness is similar to5 mum. XRD results revealed that Ag0.01Bi0.85V0.54Mo0.45O4 with a Scheelite structure, which is catalytically active for the selective oxidation of propane to acrolein, was formed in the catalytic membrane only when AgBiVMoO concentrations were higher than 40%. Catalytic reaction results demonstrated that the selective oxidation of propane could be controlled to a certain degree, such as to acrolein, in the catalytic membrane reactor (CMR) compared to the fixed bed reactor (FBR). For example, a selectivity of 54.85% for acrolein in the liquid phase was obtained in the CMR, while only 8.31% was achieved in the FBR. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oxidative dehydrogenation of propane (ODP) to propylene was investigated in a dense tubular membrane reactor made of Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) at 700degreesC and 750degreesC. The propylene selectivity in the membrane reactor (44.2%) is much higher than that in the fixed-bed reactor (15%) at the similar propane conversion (23-27%). Higher propylene selectivity in the membrane reactor was attributed to the lattice oxygen (O2-) supplied through the membrane.