992 resultados para finite-size superfluid
Resumo:
We study the nonequilibrium behavior of the three-dimensional Gaussian random-field Ising model at T=0 in the presence of a uniform external field using a two-spin-flip dynamics. The deterministic, history-dependent evolution of the system is compared with the one obtained with the standard one-spin-flip dynamics used in previous studies of the model. The change in the dynamics yields a significant suppression of coercivity, but the distribution of avalanches (in number and size) stays remarkably similar, except for the largest ones that are responsible for the jump in the saturation magnetization curve at low disorder in the thermodynamic limit. By performing a finite-size scaling study, we find strong evidence that the change in the dynamics does not modify the universality class of the disorder-induced phase transition.
Resumo:
The influence of vacancy concentration on the behavior of the three-dimensional random field Ising model with metastable dynamics is studied. We have focused our analysis on the number of spanning avalanches which allows us a clear determination of the critical line where the hysteresis loops change from continuous to discontinuous. By a detailed finite-size scaling analysis we determine the phase diagram and numerically estimate the critical exponents along the whole critical line. Finally, we discuss the origin of the curvature of the critical line at high vacancy concentration.
Resumo:
We introduce a class of exactly solvable models exhibiting an ordering noise-induced phase transition in which order arises as a result of a balance between the relaxing deterministic dynamics and the randomizing character of the fluctuations. A finite-size scaling analysis of the phase transition reveals that it belongs to the universality class of the equilibrium Ising model. All these results are analyzed in the light of the nonequilibrium probability distribution of the system, which can be obtained analytically. Our results could constitute a possible scenario of inverted phase diagrams in the so-called lower critical solution temperature transitions.
Resumo:
Intensive numerical studies of exact ground states of the two-dimensional ferromagnetic random field Ising model at T=0, with a Gaussian distribution of fields, are presented. Standard finite size scaling analysis of the data suggests the existence of a transition at ¿c=0.64±0.08. Results are compared with existing theories and with the study of metastable avalanches in the same model.
Resumo:
In this paper, we study dynamical aspects of the two-dimensional (2D) gonihedric spin model using both numerical and analytical methods. This spin model has vanishing microscopic surface tension and it actually describes an ensemble of loops living on a 2D surface. The self-avoidance of loops is parametrized by a parameter ¿. The ¿=0 model can be mapped to one of the six-vertex models discussed by Baxter, and it does not have critical behavior. We have found that allowing for ¿¿0 does not lead to critical behavior either. Finite-size effects are rather severe, and in order to understand these effects, a finite-volume calculation for non-self-avoiding loops is presented. This model, like his 3D counterpart, exhibits very slow dynamics, but a careful analysis of dynamical observables reveals nonglassy evolution (unlike its 3D counterpart). We find, also in this ¿=0 case, the law that governs the long-time, low-temperature evolution of the system, through a dual description in terms of defects. A power, rather than logarithmic, law for the approach to equilibrium has been found.
Resumo:
We have systematically analyzed six different reticular models with quenched disorder and no thermal fluctuations exhibiting a field-driven first-order phase transition. We have studied the nonequilibrium transition, appearing when varying the amount of disorder, characterized by the change from a discontinuous hysteresis cycle (with one or more large avalanches) to a smooth one (with only tiny avalanches). We have computed critical exponents using finite size scaling techniques and shown that they are consistent with universal values depending only on the space dimensionality d.
Resumo:
We introduce a new parameter to investigate replica symmetry breaking transitions using finite-size scaling methods. Based on exact equalities initially derived by F. Guerra this parameter is a direct check of the self-averaging character of the spin-glass order parameter. This new parameter can be used to study models with time reversal symmetry but its greatest interest lies in models where this symmetry is absent. We apply the method to long-range and short-range Ising spin-glasses with and without a magnetic field as well as short-range multispin interaction spin-glasses.
Resumo:
In this article we present a detailed analysis of the kinetics of a class of sequential adsorption models that take into account the effect of externally applied fields (as an electric field, or a shear rate) on the adsorption. The excluded volume interactions related to the finite size of the adsorbing particles are modified by the external fields. As a result, new adsorption mechanisms appear with respect to the ones used to describe the kinetics in a quiescent fluid. In particular, if the adsorbing particles are allowed to roll over preadsorbed ones, adsorption becomes non local even in the simplest geometry. An exact analytic theory cannot be developed, but we introduce a self-consistent theory that turns out to agree with the simulation results over all the range of the parameters.
Resumo:
In this article we present a detailed analysis of the kinetics of a class of sequential adsorption models that take into account the effect of externally applied fields (as an electric field, or a shear rate) on the adsorption. The excluded volume interactions related to the finite size of the adsorbing particles are modified by the external fields. As a result, new adsorption mechanisms appear with respect to the ones used to describe the kinetics in a quiescent fluid. In particular, if the adsorbing particles are allowed to roll over preadsorbed ones, adsorption becomes non local even in the simplest geometry. An exact analytic theory cannot be developed, but we introduce a self-consistent theory that turns out to agree with the simulation results over all the range of the parameters.
Resumo:
We study the static properties of the Little model with asymmetric couplings. We show that the thermodynamics of this model coincides with that of the Sherrington-Kirkpatrick model, and we compute the main finite-size corrections to the difference of the free energy between these two models and to some clarifying order parameters. Our results agree with numerical simulations. Numerical results are presented for the symmetric Little model, which show that the same conclusions are also valid in this case.
Resumo:
We characterize the different morphological phases that occur in a simple one-dimensional model of propagation of innovations among economic agents [X. Guardiola et al., Phys. Rev E 66, 026121 (2002)]. We show that the model can be regarded as a nonequilibrium surface growth model. This allows us to demonstrate the presence of a continuous roughening transition between a flat (system size independent fluctuations) and a rough phase (system size dependent fluctuations). Finite-size scaling studies at the transition strongly suggest that the dynamic critical transition does not belong to directed percolation and, in fact, critical exponents do not seem to fit in any of the known universality classes of nonequilibrium phase transitions. Finally, we present an explanation for the occurrence of the roughening transition and argue that avalanche driven dynamics is responsible for the novel critical behavior.
Resumo:
Much of the analytical modeling of morphogen profiles is based on simplistic scenarios, where the source is abstracted to be point-like and fixed in time, and where only the steady state solution of the morphogen gradient in one dimension is considered. Here we develop a general formalism allowing to model diffusive gradient formation from an arbitrary source. This mathematical framework, based on the Green's function method, applies to various diffusion problems. In this paper, we illustrate our theory with the explicit example of the Bicoid gradient establishment in Drosophila embryos. The gradient formation arises by protein translation from a mRNA distribution followed by morphogen diffusion with linear degradation. We investigate quantitatively the influence of spatial extension and time evolution of the source on the morphogen profile. For different biologically meaningful cases, we obtain explicit analytical expressions for both the steady state and time-dependent 1D problems. We show that extended sources, whether of finite size or normally distributed, give rise to more realistic gradients compared to a single point-source at the origin. Furthermore, the steady state solutions are fully compatible with a decreasing exponential behavior of the profile. We also consider the case of a dynamic source (e.g. bicoid mRNA diffusion) for which a protein profile similar to the ones obtained from static sources can be achieved.
Resumo:
In the classical theorems of extreme value theory the limits of suitably rescaled maxima of sequences of independent, identically distributed random variables are studied. The vast majority of the literature on the subject deals with affine normalization. We argue that more general normalizations are natural from a mathematical and physical point of view and work them out. The problem is approached using the language of renormalization-group transformations in the space of probability densities. The limit distributions are fixed points of the transformation and the study of its differential around them allows a local analysis of the domains of attraction and the computation of finite-size corrections.
Resumo:
The charge ordered La1/3Sr2/3FeO3−δ (LSFO) in bulk and nanocrystalline forms are investigated using ac and dc magnetization, M¨ossbauer, and polarized neutron studies. A complex scenario of short-range charge and magnetic ordering is realized from the polarized neutron studies in nanocrystalline specimen. This short-range ordering does not involve any change in spin state and modification in the charge disproportion between Fe3+ and Fe5+ compared to bulk counterpart as evident in the M¨ossbauer results. The refinement of magnetic diffraction peaks provides magnetic moments of Fe3+ and Fe5+ are about 3.15 μB and 1.57 μB for bulk, and 2.7 μB and 0.53 μB for nanocrystalline specimen, respectively. The destabilization of charge ordering leads to magnetic phase separation, giving rise to the robust exchange bias (EB) effect. Strikingly, EB field at 5 K attains a value as high as 4.4 kOe for average size ∼70 nm, which is zero for the bulk counterpart. A strong frequency dependence of ac susceptibility reveals cluster-glass-like transition around ∼65 K, below which EB appears. Overall results propose that finite-size effect directs the complex glassy magnetic behavior driven by unconventional short-range charge and magnetic ordering, and magnetic phase separation appears in nanocrystalline LSFO.
Resumo:
In this work, we investigate the influence of finite size on the recombinations dynamics of ZnO nanowires. We demonstrate that diameter as well as lenght of nanowires determine the lifetime of the neutral donor bound excitons. Our findings suggest that while the length is mainly responsible for different mode quality factors of the cavity-like nanowires, the diameter determines the influence of surface states as alternative recombinations channels for the optical modes trapped in the nanocavity. In addition, comparing nanowires grown using different catalyst we show that the surfaces states strongly depend on each precursor characteristics.