948 resultados para finite complex unitary groups


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objectives: Elevated shame and dissociation are common in dissociative identity disorder (DID) and chronic posttraumatic stress disorder (PTSD) and are part of the constellation of symptoms defined as complex PTSD. Previous work examined the relationship between shame, dissociation, and complex PTSD and whether they are associated with intimate relationship anxiety, relationship depression, and fear of relationships. This study investigated these variables in traumatized clinical samples and a nonclinical community group.

Method: Participants were drawn from the DID (n = 20), conflict-related chronic PTSD (n = 65), and nonclinical (n = 125) populations and completed questionnaires assessing the variables of interest. A model examining the direct impact of shame and dissociation on relationship functioning, and their indirect effect via complex PTSD symptoms, was tested through path analysis.

Results: The DID sample reported significantly higher dissociation, shame, complex PTSD symptom severity, relationship anxiety, relationship depression, and fear of relationships than the other two samples. Support was found for the proposed model, with shame directly affecting relationship anxiety and fear of relationships, and pathological dissociation directly affecting relationship anxiety and relationship depression. The indirect effect of shame and dissociation via complex PTSD symptom severity was evident on all relationship variables.

Conclusion: Shame and pathological dissociation are important for not only the effect they have on the development of other complex PTSD symptoms, but also their direct and indirect effects on distress associated with relationships.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A number of research groups are now developing and using finite volume (FV) methods for computational solid mechanics (CSM). These methods are proving to be equivalent and in some cases superior to their finite element (FE) counterparts. In this paper we will describe a vertex-based FV method with arbitrarily structured meshes, for modelling the elasto-plastic deformation of solid materials undergoing small strains in complex geometries. Comparisons with rational FE methods will be given.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We define generalized cluster states based on finite group algebras in analogy to the generalization of the toric code to the Kitaev quantum double models. We do this by showing a general correspondence between systems with CSS structure and finite group algebras, and applying this to the cluster states to derive their generalization. We then investigate properties of these states including their projected entangled pair state representations, global symmetries, and relationship to the Kitaev quantum double models. We also discuss possible applications of these states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osteoporosis is a disease characterized by low bone mass and micro-architectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Osteoporosis affects over 200 million people worldwide, with an estimated 1.5 million fractures annually in the United States alone, and with attendant costs exceeding $10 billion dollars per annum. Osteoporosis reduces bone density through a series of structural changes to the honeycomb-like trabecular bone structure (micro-structure). The reduced bone density, coupled with the microstructural changes, results in significant loss of bone strength and increased fracture risk. Vertebral compression fractures are the most common type of osteoporotic fracture and are associated with pain, increased thoracic curvature, reduced mobility, and difficulty with self care. Surgical interventions, such as kyphoplasty or vertebroplasty, are used to treat osteoporotic vertebral fractures by restoring vertebral stability and alleviating pain. These minimally invasive procedures involve injecting bone cement into the fractured vertebrae. The techniques are still relatively new and while initial results are promising, with the procedures relieving pain in 70-95% of cases, medium-term investigations are now indicating an increased risk of adjacent level fracture following the procedure. With the aging population, understanding and treatment of osteoporosis is an increasingly important public health issue in developed Western countries. The aim of this study was to investigate the biomechanics of spinal osteoporosis and osteoporotic vertebral compression fractures by developing multi-scale computational, Finite Element (FE) models of both healthy and osteoporotic vertebral bodies. The multi-scale approach included the overall vertebral body anatomy, as well as a detailed representation of the internal trabecular microstructure. This novel, multi-scale approach overcame limitations of previous investigations by allowing simultaneous investigation of the mechanics of the trabecular micro-structure as well as overall vertebral body mechanics. The models were used to simulate the progression of osteoporosis, the effect of different loading conditions on vertebral strength and stiffness, and the effects of vertebroplasty on vertebral and trabecular mechanics. The model development process began with the development of an individual trabecular strut model using 3D beam elements, which was used as the building block for lattice-type, structural trabecular bone models, which were in turn incorporated into the vertebral body models. At each stage of model development, model predictions were compared to analytical solutions and in-vitro data from existing literature. The incremental process provided confidence in the predictions of each model before incorporation into the overall vertebral body model. The trabecular bone model, vertebral body model and vertebroplasty models were validated against in-vitro data from a series of compression tests performed using human cadaveric vertebral bodies. Firstly, trabecular bone samples were acquired and morphological parameters for each sample were measured using high resolution micro-computed tomography (CT). Apparent mechanical properties for each sample were then determined using uni-axial compression tests. Bone tissue properties were inversely determined using voxel-based FE models based on the micro-CT data. Specimen specific trabecular bone models were developed and the predicted apparent stiffness and strength were compared to the experimentally measured apparent stiffness and strength of the corresponding specimen. Following the trabecular specimen tests, a series of 12 whole cadaveric vertebrae were then divided into treated and non-treated groups and vertebroplasty performed on the specimens of the treated group. The vertebrae in both groups underwent clinical-CT scanning and destructive uniaxial compression testing. Specimen specific FE vertebral body models were developed and the predicted mechanical response compared to the experimentally measured responses. The validation process demonstrated that the multi-scale FE models comprising a lattice network of beam elements were able to accurately capture the failure mechanics of trabecular bone; and a trabecular core represented with beam elements enclosed in a layer of shell elements to represent the cortical shell was able to adequately represent the failure mechanics of intact vertebral bodies with varying degrees of osteoporosis. Following model development and validation, the models were used to investigate the effects of progressive osteoporosis on vertebral body mechanics and trabecular bone mechanics. These simulations showed that overall failure of the osteoporotic vertebral body is initiated by failure of the trabecular core, and the failure mechanism of the trabeculae varies with the progression of osteoporosis; from tissue yield in healthy trabecular bone, to failure due to instability (buckling) in osteoporotic bone with its thinner trabecular struts. The mechanical response of the vertebral body under load is highly dependent on the ability of the endplates to deform to transmit the load to the underlying trabecular bone. The ability of the endplate to evenly transfer the load through the core diminishes with osteoporosis. Investigation into the effect of different loading conditions on the vertebral body found that, because the trabecular bone structural changes which occur in osteoporosis result in a structure that is highly aligned with the loading direction, the vertebral body is consequently less able to withstand non-uniform loading states such as occurs in forward flexion. Changes in vertebral body loading due to disc degeneration were simulated, but proved to have little effect on osteoporotic vertebra mechanics. Conversely, differences in vertebral body loading between simulated invivo (uniform endplate pressure) and in-vitro conditions (where the vertebral endplates are rigidly cemented) had a dramatic effect on the predicted vertebral mechanics. This investigation suggested that in-vitro loading using bone cement potting of both endplates has major limitations in its ability to represent vertebral body mechanics in-vivo. And lastly, FE investigation into the biomechanical effect of vertebroplasty was performed. The results of this investigation demonstrated that the effect of vertebroplasty on overall vertebra mechanics is strongly governed by the cement distribution achieved within the trabecular core. In agreement with a recent study, the models predicted that vertebroplasty cement distributions which do not form one continuous mass which contacts both endplates have little effect on vertebral body stiffness or strength. In summary, this work presents the development of a novel, multi-scale Finite Element model of the osteoporotic vertebral body, which provides a powerful new tool for investigating the mechanics of osteoporotic vertebral compression fractures at the trabecular bone micro-structural level, and at the vertebral body level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecological problems are typically multi faceted and need to be addressed from a scientific and a management perspective. There is a wealth of modelling and simulation software available, each designed to address a particular aspect of the issue of concern. Choosing the appropriate tool, making sense of the disparate outputs, and taking decisions when little or no empirical data is available, are everyday challenges facing the ecologist and environmental manager. Bayesian Networks provide a statistical modelling framework that enables analysis and integration of information in its own right as well as integration of a variety of models addressing different aspects of a common overall problem. There has been increased interest in the use of BNs to model environmental systems and issues of concern. However, the development of more sophisticated BNs, utilising dynamic and object oriented (OO) features, is still at the frontier of ecological research. Such features are particularly appealing in an ecological context, since the underlying facts are often spatial and temporal in nature. This thesis focuses on an integrated BN approach which facilitates OO modelling. Our research devises a new heuristic method, the Iterative Bayesian Network Development Cycle (IBNDC), for the development of BN models within a multi-field and multi-expert context. Expert elicitation is a popular method used to quantify BNs when data is sparse, but expert knowledge is abundant. The resulting BNs need to be substantiated and validated taking this uncertainty into account. Our research demonstrates the application of the IBNDC approach to support these aspects of BN modelling. The complex nature of environmental issues makes them ideal case studies for the proposed integrated approach to modelling. Moreover, they lend themselves to a series of integrated sub-networks describing different scientific components, combining scientific and management perspectives, or pooling similar contributions developed in different locations by different research groups. In southern Africa the two largest free-ranging cheetah (Acinonyx jubatus) populations are in Namibia and Botswana, where the majority of cheetahs are located outside protected areas. Consequently, cheetah conservation in these two countries is focussed primarily on the free-ranging populations as well as the mitigation of conflict between humans and cheetahs. In contrast, in neighbouring South Africa, the majority of cheetahs are found in fenced reserves. Nonetheless, conflict between humans and cheetahs remains an issue here. Conservation effort in South Africa is also focussed on managing the geographically isolated cheetah populations as one large meta-population. Relocation is one option among a suite of tools used to resolve human-cheetah conflict in southern Africa. Successfully relocating captured problem cheetahs, and maintaining a viable free-ranging cheetah population, are two environmental issues in cheetah conservation forming the first case study in this thesis. The second case study involves the initiation of blooms of Lyngbya majuscula, a blue-green algae, in Deception Bay, Australia. L. majuscula is a toxic algal bloom which has severe health, ecological and economic impacts on the community located in the vicinity of this algal bloom. Deception Bay is an important tourist destination with its proximity to Brisbane, Australia’s third largest city. Lyngbya is one of several algae considered to be a Harmful Algal Bloom (HAB). This group of algae includes other widespread blooms such as red tides. The occurrence of Lyngbya blooms is not a local phenomenon, but blooms of this toxic weed occur in coastal waters worldwide. With the increase in frequency and extent of these HAB blooms, it is important to gain a better understanding of the underlying factors contributing to the initiation and sustenance of these blooms. This knowledge will contribute to better management practices and the identification of those management actions which could prevent or diminish the severity of these blooms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An essential challenge for organizations wishing to overcome informational silos is to implement mechanisms that facilitate, encourage and sustain interactions between otherwise disconnected groups. Using three case examples, this paper explores how Enterprise 2.0 technologies achieve such goals, allowing for the transfer of knowledge by tapping into the tacit and explicit knowledge of disparate groups in complex engineering organizations. The paper is intended to be a timely introduction to the benefits and issues associated with the use of Enterprise 2.0 technologies with the aim of achieving the positive outcomes associated with knowledge management

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extensive groundwater withdrawal has resulted in a severe seawater intrusion problem in the Gooburrum aquifers at Bundaberg, Queensland, Australia. Better management strategies can be implemented by understanding the seawater intrusion processes in those aquifers. To study the seawater intrusion process in the region, a two-dimensional density-dependent, saturated and unsaturated flow and transport computational model is used. The model consists of a coupled system of two non-linear partial differential equations. The first equation describes the flow of a variable-density fluid, and the second equation describes the transport of dissolved salt. A two-dimensional control volume finite element model is developed for simulating the seawater intrusion into the heterogeneous aquifer system at Gooburrum. The simulation results provide a realistic mechanism by which to study the convoluted transport phenomena evolving in this complex heterogeneous coastal aquifer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many industrial processes and systems can be modelled mathematically by a set of Partial Differential Equations (PDEs). Finding a solution to such a PDF model is essential for system design, simulation, and process control purpose. However, major difficulties appear when solving PDEs with singularity. Traditional numerical methods, such as finite difference, finite element, and polynomial based orthogonal collocation, not only have limitations to fully capture the process dynamics but also demand enormous computation power due to the large number of elements or mesh points for accommodation of sharp variations. To tackle this challenging problem, wavelet based approaches and high resolution methods have been recently developed with successful applications to a fixedbed adsorption column model. Our investigation has shown that recent advances in wavelet based approaches and high resolution methods have the potential to be adopted for solving more complicated dynamic system models. This chapter will highlight the successful applications of these new methods in solving complex models of simulated-moving-bed (SMB) chromatographic processes. A SMB process is a distributed parameter system and can be mathematically described by a set of partial/ordinary differential equations and algebraic equations. These equations are highly coupled; experience wave propagations with steep front, and require significant numerical effort to solve. To demonstrate the numerical computing power of the wavelet based approaches and high resolution methods, a single column chromatographic process modelled by a Transport-Dispersive-Equilibrium linear model is investigated first. Numerical solutions from the upwind-1 finite difference, wavelet-collocation, and high resolution methods are evaluated by quantitative comparisons with the analytical solution for a range of Peclet numbers. After that, the advantages of the wavelet based approaches and high resolution methods are further demonstrated through applications to a dynamic SMB model for an enantiomers separation process. This research has revealed that for a PDE system with a low Peclet number, all existing numerical methods work well, but the upwind finite difference method consumes the most time for the same degree of accuracy of the numerical solution. The high resolution method provides an accurate numerical solution for a PDE system with a medium Peclet number. The wavelet collocation method is capable of catching up steep changes in the solution, and thus can be used for solving PDE models with high singularity. For the complex SMB system models under consideration, both the wavelet based approaches and high resolution methods are good candidates in terms of computation demand and prediction accuracy on the steep front. The high resolution methods have shown better stability in achieving steady state in the specific case studied in this Chapter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The collaboration of clinicians with basic science researchers is crucial for addressing clinically relevant research questions. In order to initiate such mutually beneficial relationships, we propose a model where early career clinicians spend a designated time embedded in established basic science research groups, in order to pursue a postgraduate qualification. During this time, clinicians become integral members of the research team, fostering long term relationships and opening up opportunities for continuing collaboration. However, for these collaborations to be successful there are pitfalls to be avoided. Limited time and funding can lead to attempts to answer clinical challenges with highly complex research projects characterised by a large number of "clinical" factors being introduced in the hope that the research outcomes will be more clinically relevant. As a result, the complexity of such studies and variability of its outcomes may lead to difficulties in drawing scientifically justified and clinically useful conclusions. Consequently, we stress that it is the basic science researcher and the clinician's obligation to be mindful of the limitations and challenges of such multi-factorial research projects. A systematic step-by-step approach to address clinical research questions with limited, but highly targeted and well defined research projects provides the solid foundation which may lead to the development of a longer term research program for addressing more challenging clinical problems. Ultimately, we believe that it is such models, encouraging the vital collaboration between clinicians and researchers for the work on targeted, well defined research projects, which will result in answers to the important clinical challenges of today.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An often neglected but well recognised aspect of successful engineering asset management is the achievement of co-operation and collaboration between various occupational, functional and hierarchical levels present within complex technical environments. Engineering and technical contexts have been well documented for the presence of highly cohesive groups based around around functional or role orientations. However while highly cohesive groups are potentially advantageous they are also often correlated with the emergence of knowledge and information silos based around those same functional or occupational clusters. Improved collaboration and co-operation between groups has been demonstrated to result in a number of positive outcomes at an individual, group and organisational level. Example outcomes include an increased capacity for problem solving, improved responsiveness and adaptation to organisational crises, higher morale and an increased ability to leverage workforce capability. However, an essential challenge for organisations wishing to overcome informational silos is to implement mechanisms that facilitate, encourage and sustain interactions between otherwise disconnected groups. This paper reviews the ability of Web 2.0 technologies and mobile computing devices to facilitate and encourage knowledge sharing between “silo’d” groups. Commonly available tools such as Facebook, Twitter, Blogs, Wiki’s and others will be reviewed in relation to their applicability, functionality and ease-of-use by engineering and technical personnel. The paper also documents three case examples of engineering organisations that have successfully employed Web 2.0 to achieve superior knowledge management. With a number of clear recommendations he paper is an essential starting point for any organization looking at the use of new generation technologies for achieving the significant outcomes associated with knowledge transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An often neglected but well recognised aspect of successful engineering asset management is the achievement of co-operation and collaboration between various occupational, functional and hierarchical levels present within complex technical environments. Engineering and technical contexts have been well documented for the presence of highly cohesive groups based around around functional or role orientations. However while highly cohesive groups are potentially advantageous they are also often correlated with the emergence of knowledge and information silos based around those same functional or occupational clusters. Improved collaboration and co-operation between groups has been demonstrated to result in a number of positive outcomes at an individual, group and organisational level. Example outcomes include an increased capacity for problem solving, improved responsiveness and adaptation to organisational crises, higher morale and an increased ability to leverage workforce capability. However, an essential challenge for organisations wishing to overcome informational silos is to implement mechanisms that facilitate, encourage and sustain interactions between otherwise disconnected groups. This paper reviews the ability of Web 2.0 technologies and mobile computing devices to facilitate and encourage knowledge sharing between “silo’d” groups. Commonly available tools such as Facebook, Twitter, Blogs, Wiki’s and others will be reviewed in relation to their applicability, functionality and ease-of-use by engineering and technical personnel. The paper also documents three case examples of engineering organisations that have successfully employed Web 2.0 to achieve superior knowledge management. With a number of clear recommendations the paper is an essential starting point for any organization looking at the use of new generation technologies for achieving the significant outcomes associated with knowledge transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article explores the use of probabilistic classification, namely finite mixture modelling, for identification of complex disease phenotypes, given cross-sectional data. In particular, if focuses on posterior probabilities of subgroup membership, a standard output of finite mixture modelling, and how the quantification of uncertainty in these probabilities can lead to more detailed analyses. Using a Bayesian approach, we describe two practical uses of this uncertainty: (i) as a means of describing a person’s membership to a single or multiple latent subgroups and (ii) as a means of describing identified subgroups by patient-centred covariates not included in model estimation. These proposed uses are demonstrated on a case study in Parkinson’s disease (PD), where latent subgroups are identified using multiple symptoms from the Unified Parkinson’s Disease Rating Scale (UPDRS).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: This paper describes the first phase of a larger project that utilizes participatory action research to examine complex mental health needs across an extensive group of stakeholders in the community. Method: Within an objective qualitative analysis of focus group discussions the social ecological model is utilized to explore how integrative activities can be informed, planned and implemented across multiple elements and levels of a system. Seventy-one primary care workers, managers, policy-makers, consumers and carers from across the southern metropolitan and Gippsland regions of Victoria, Australia took part in seven focus groups. All groups responded to an identical set of focusing questions. Results: Participants produced an explanatory model describing the service system, as it relates to people with complex needs, across the levels of social ecological analysis. Qualitative themes analysis identified four priority areas to be addressed in order to improve the system's capacity for working with complexity. These included: (i) system fragmentation; (ii) integrative case management practices; (iii) community attitudes; and (iv) money and resources. Conclusions: The emergent themes provide clues as to how complexity is constructed and interpreted across the system of involved agencies and interest groups. The implications these findings have for the development and evaluation of this community capacity-building project were examined from the perspective of constructing interventions that address both top-down and bottom-up processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Corrosion is a common phenomenon and critical aspects of steel structural application. It affects the daily design, inspection and maintenance in structural engineering, especially for the heavy and complex industrial applications, where the steel structures are subjected to hash corrosive environments in combination of high working stress condition and often in open field and/or under high temperature production environments. In the paper, it presents the actual engineering application of advanced finite element methods in the predication of the structural integrity and robustness at a designed service life for the furnaces of alumina production, which was operated in the high temperature, corrosive environments and rotating with high working stress condition.