992 resultados para file format description
Resumo:
The world's largest fossil oyster reef, formed by the giant oyster Crassostrea gryphoides and located in Stetten (north of Vienna, Austria) is studied by Harzhauser et al., 2015, 2016; Djuricic et al., 2016. Digital documentation of the unique geological site is provided by terrestrial laser scanning (TLS) at the millimeter scale. Obtaining meaningful results is not merely a matter of data acquisition with a suitable device; it requires proper planning, data management, and postprocessing. Terrestrial laser scanning technology has a high potential for providing precise 3D mapping that serves as the basis for automatic object detection in different scenarios; however, it faces challenges in the presence of large amounts of data and the irregular geometry of an oyster reef. We provide a detailed description of the techniques and strategy used for data collection and processing in Djuricic et al., 2016. The use of laser scanning provided the ability to measure surface points of 46,840 (estimated) shells. They are up to 60-cm-long oyster specimens, and their surfaces are modeled with a high accuracy of 1 mm. In addition to laser scanning measurements, more than 300 photographs were captured, and an orthophoto mosaic was generated with a ground sampling distance (GSD) of 0.5 mm. This high-resolution 3D information and the photographic texture serve as the basis for ongoing and future geological and paleontological analyses. Moreover, they provide unprecedented documentation for conservation issues at a unique natural heritage site.
Resumo:
An emerging approach to downscaling the projections from General Circulation Models (GCMs) to scales relevant for basin hydrology is to use output of GCMs to force higher-resolution Regional Climate Models (RCMs). With spatial resolution often in the tens of kilometers, however, even RCM output will likely fail to resolve local topography that may be climatically significant in high-relief basins. Here we develop and apply an approach for downscaling RCM output using local topographic lapse rates (empirically-estimated spatially and seasonally variable changes in climate variables with elevation). We calculate monthly local topographic lapse rates from the 800-m Parameter-elevation Regressions on Independent Slopes Model (PRISM) dataset, which is based on regressions of observed climate against topographic variables. We then use these lapse rates to elevationally correct two sources of regional climate-model output: (1) the North American Regional Reanalysis (NARR), a retrospective dataset produced from a regional forecasting model constrained by observations, and (2) a range of baseline climate scenarios from the North American Regional Climate Change Assessment Program (NARCCAP), which is produced by a series of RCMs driven by GCMs. By running a calibrated and validated hydrologic model, the Soil and Water Assessment Tool (SWAT), using observed station data and elevationally-adjusted NARR and NARCCAP output, we are able to estimate the sensitivity of hydrologic modeling to the source of the input climate data. Topographic correction of regional climate-model data is a promising method for modeling the hydrology of mountainous basins for which no weather station datasets are available or for simulating hydrology under past or future climates.
Resumo:
Two Polarstern expeditions were conducted in 1995 (ANT-XII/4) and 2001 (ANT-XVIII/5a) to the Bellingshausen Sea and Amundsen Sea and the suspected Eltanin meteorite impact in the SE-Pacific. A survey of the sediment distribution and its acoustic structure along the cruise track was performed. The seafloor topography was sampled using the multibeam sonar system Hydrosweep DS2 which operates on a frequency of 15.5 kHz. The resulting AWI Bathymetric Chart of the Eltanin Meteorite Impact Area is based on a Digital Terrain Model of this area. The mapping was performed using ArcGIS. The Eltanin impact area which covers the 4.100 m high Freden Seamount is visualized by one overview sheet of the scale 1:200,000 and four 1:100,000 subsheets.
Resumo:
Underwater photo-transect surveys were conducted on September 23-27, 2007 at different sections of the reef flat, reef crest and reef slope in Heron Reef. This survey was done by swimming along pre-defined transect sites and taking a picture of the bottom substrate parallel to the bottom at constant vertical distance (30cm) every two to three metres. A total of 3,586 benthic photos were taken. A floating GPS setup connected to the swimmer/diver by a line enabled recording of coordinates of transect surveys. Approximation of the coordinates for each benthic photo was based on the photo timestamp and GPS coordinate time stamp, using GPS Photo Link Software. Coordinates of each photo were interpolated by finding the the gps coordinates that were logged at a set time before and after the photo was captured. The output of this process was an ArcMap point shapefile, a Google Earth KML file and a thumbnail of each benthic photo taken. The data in the ArcMap shapefile and in the Google Earth KML file consisted of the approximated coordinate of each benthic photo taken during the survey. Using the GPS Photo Link extension within the ArcMap environment, opening the ArcMap shapefile will enable thumbnail to be displayed on the associated benthic cover photo whenever hovering with the mouse over a point on the transect. By downloading the GPSPhotoLink software from the www.geospatialexperts.com, and installing it as a trial version the ArcMap exstension will be installed in the ArcMap environment.
Resumo:
The 1 : 1,500,000 AWI Bathymetric Chart of the Gakkel Ridge (AWI BCGR) has been developed from multibeam data measured during the Arctic Mid-Ocean Ridge Expedition in 2001 (AMORE 2001, ARK-XVII/2). This expedition was conducted to investigate the Gakkel Ridge in the Arctic Ocean and was carried out by the icebreaking research vessels RV Polarstern and USCGC Healy. Polarstern is equipped with the multibeam sonar system Hydrosweep DS-2, whereas Healy carries Seabeam 2112. During the expedition an area of 8890 km length and 18 - 46 km width, situated between 82°N/8°W and 87°N/75°E, was surveyed simultaneously by both vessels. Water depths ranged from 566 to 5673 meters. Dense sea ice cover derogated the sonar measurements and decreased data quality. Data errors were corrected in an extensive post-processing. The data of two different sonar systems had to be consolidated in order to derive a high resolution bathymetry of the Gakkel Ridge. Final result was a digital terrain model (DTM) with a grid spacing of 100 meters, which was utilized for generating the map series AWI Bathymetric Chart of the Gakkel Ridge, consisting of ten map sheets.
Resumo:
Marine spatial planning and ecological research call for high-resolution species distribution data. However, those data are still not available for most marine large vertebrates. The dynamic nature of oceanographic processes and the wide-ranging behavior of many marine vertebrates create further difficulties, as distribution data must incorporate both the spatial and temporal dimensions. Cetaceans play an essential role in structuring and maintaining marine ecosystems and face increasing threats from human activities. The Azores holds a high diversity of cetaceans but the information about spatial and temporal patterns of distribution for this marine megafauna group in the region is still very limited. To tackle this issue, we created monthly predictive cetacean distribution maps for spring and summer months, using data collected by the Azores Fisheries Observer Programme between 2004 and 2009. We then combined the individual predictive maps to obtain species richness maps for the same period. Our results reflect a great heterogeneity in distribution among species and within species among different months. This heterogeneity reflects a contrasting influence of oceanographic processes on the distribution of cetacean species. However, some persistent areas of increased species richness could also be identified from our results. We argue that policies aimed at effectively protecting cetaceans and their habitats must include the principle of dynamic ocean management coupled with other area-based management such as marine spatial planning.
Resumo:
This data set contains the inputs and the results of the REDD+ Policy Assessment Centre project (REDD-PAC) project (http://www.redd-pac.org), developed by a consortium of research institutes (IIASA, INPE, IPEA, UNEP-WCMC), supported by Germany's International Climate Initiative. Taking a new land use map of Brazil for 2000 as input, the research team used the global economic model GLOBIOM to project land use changes in Brazil up to 2050. Model projections show that Brazil has the potential to balance its goals of protecting the environment and becoming a major global producer of food and biofuels. The model results were taken into account by Brazilian decision-makers when developing the country's intended nationally determined contribution (INDC).
Resumo:
Topographic variation, the spatial variation in elevation and terrain features, underpins a myriad of patterns and processes in geography and ecology and is key to understanding the variation of life on the planet. The characterization of this variation is scale-dependent, i.e. it varies with the distance over which features are assessed and with the spatial grain (grid cell resolution) of analysis. A fully standardized and global multivariate product of different terrain features has the potential to support many large-scale basic research and analytical applications, however to date, such technique is unavailable. Here we used the digital elevation model products of global 250 m GMTED and near-global 90 m SRTM to derive a suite of topographic variables: elevation, slope, aspect, eastness, northness, roughness, terrain roughness index, topographic position index, vector ruggedness measure, profile and tangential curvature, and 10 geomorphological landform classes. We aggregated each variable to 1, 5, 10, 50 and 100 km spatial grains using several aggregation approaches (median, average, minimum, maximum, standard deviation, percent cover, count, majority, Shannon Index, entropy, uniformity). While a global cross-correlation underlines the high similarity of many variables, a more detailed view in four mountain regions reveals local differences, as well as scale variations in the aggregated variables at different spatial grains. All newly-developed variables are available for download at http://www.earthenv.org and can serve as a basis for standardized hydrological, environmental and biodiversity modeling at a global extent.
Resumo:
Transient simulations are widely used in studying the past climate as they provide better comparison with any exisiting proxy data. However, multi-millennial transient simulations using coupled climate models are usually computationally very expensive. As a result several acceleration techniques are implemented when using numerical simulations to recreate past climate. In this study, we compare the results from transient simulations of the present and the last interglacial with and without acceleration of the orbital forcing, using the comprehensive coupled climate model CCSM3 (Community Climate System Model 3). Our study shows that in low-latitude regions, the simulation of long-term variations in interglacial surface climate is not significantly affected by the use of the acceleration technique (with an acceleration factor of 10) and hence, large-scale model-data comparison of surface variables is not hampered. However, in high-latitude regions where the surface climate has a direct connection to the deep ocean, e.g. in the Southern Ocean or the Nordic Seas, acceleration-induced biases in sea-surface temperature evolution may occur with potential influence on the dynamics of the overlying atmosphere. The data provided here are from both accelerated and non-accelerated runs as decadal mean values.
Resumo:
This document specifies the NetCDF file format of EGO-gliders that is used to distribute glider data, metadata and technical data. It documents the standards used therein; this includes naming conventions as well as metadata content. It was initiated in October 2012, based on OceanSITES, Argo and ANFOG user's manuals. Everyone’s Gliding Observatories - EGO is dedicated to the promotion of the glider technology and its applications. The EGO group promotes glider applications through coordination, training, liaison between providers and users, advocacy, and provision of expert advice. We intend to favor oceanographic experiments and the operational monitoring of the oceans with gliders through scientific and international collaboration. We provide news, support, information about glider projects and glider data management, as well as resources related to gliders. All EGO data are publicly available. More information about the project is available at: http://www.ego-network.org