972 resultados para ferrous sulphate
Resumo:
The Raman spectrum of lithium hydrazinium sulphate has been recorded both in the single crystal form and in aqueous solutions. The crystal exhibits thirty-eight Raman lines having the frequency shifts 52, 70, 104, 146, 174, 220, 260, 302, 350, 454, 470, 610, 630, 715, 977, 1094, 1115, 1132, 1177, 1191, 1260, 1444, 1493, 1577, 1630, 1670, 2205, 2484, 2553, 2655, 2734, 2848, 2894, 2939, 3028, 3132, 3290 and 3330 cm.−1 The aqueous solution gave rise to six Raman lines at 452, 980, 1050–1200, 1260, 1425 and 1570 cm.−1 apart from a maximum at 180 cm.−1 in the ‘wing’ accompanying the Rayleigh line. The observed Raman lines have been assigned as arising from the vibrations of the SO4 ion, N2H5+ ion, Li-O4 group, hydrogen bond and the lattice. The influence of the hydrogen bond on the N-H stretching vibrations has been pointed out. The various features of the observed spectrum strongly support the hypothesis that the NH3 group in the crystal is rotating around the N-N axis at room temperature.
Resumo:
The Raman spectrum of guanidinium aluminium sulphate hexahydrate also known as ‘GASH’ which is a ferro-electric crystal and has strong hydrogen bonds has been recorded. 38 Raman lines have been identified in the spectra of GASH. The O-H stretching mode is found to be very much influenced by the hydrogen bond and they appear over a widely extended region from 2240–3600 cm.−1 It can therefore be concluded that all the O-H bonds are hydrogen bonded and some of them are quite strong. The Raman lines due to the N-H vibrations appear with the normal frequency shifts indicating thereby that N-H bonds are not hydrogen bonded. These conclusions are fully supported by the results obtained from the X-ray crystal structure analysis of GASH. The principal vibrations of the Al-(OH2)6 groups have also been identified.
Resumo:
Raman spectrum of a single crystal of lanthanum ethyl sulphate has been recorded for the first time using the λ 2537 radiation Forty-one lines have been identified out of which eight belong to the lattice oscillations, seven to the internal vibrations of the water molecule and the remaining twenty-six to the internal vibrations of the ethyl sulphate group. The Raman spectrum of ethyl sulphate (liquid) has also been recorded using the λ 4358 excitation and is compared with the spectrum of lanthanum ethyl sulphate. Thirty Raman lines could be identified in the spectrum of ethyl sulphate, of which fourteen are recorded for the first time. Probable assignments of the observed frequencies are also given. The sulphate group is found to have O-SO3 structure in lanthanum ethyl sulphate, while it has a co-ordination {Mathematical expression} in ethyl sulphate.
Resumo:
Polarisation characters of the Raman lines of calcium fluoride (fluorspar) and potassium aluminium sulphate (alum) were investigated under the following conditions. Unpolarised light was incident normally on a face of the crystal making an angle 22.5° with a cubic face and the light scattered transversely along a cubic axis was analysed by a double image prism kept with its principal axes inclined at 45° to the vertical. Under these conditions the depolarisation factors of the Raman lines belonging to the totally symmetric (A), the doubly degenerate (E) and the triply degenerate (F) modes should be respectively =1, >1 and <1. The characteristic Raman line of CaF2 at 322 cm-1 exhibited a depolarisation value less than 1, showing thereby that the corresponding mode is a triply degenerate one (F). The Raman lines observed in the spectrum of K-alum were also classified and the results were compared with those given by previous investigators using standard crystal orientations.
Resumo:
ALTHOUGH titanium is determined colorimetrically in aqueous sulphuric acid medium in presence of excess of hydrogen peroxide, the nature of the colour-forming species is not known definitely. Schwarz1 suggested that the colour was due to the peroxo-disulphato titanate anion [O 2Ti(SO4)2]2-. On the other hand, Jahr2 and later Gastinger3 considered that the colour of the compound was due to the peroxy titanyl cation [TiO2 aq.] 2+, and suggested the following equilibrium in solution: Schaeppi and Treadwell4 attributed the colour bo O2TiSO4 or [O2Ti(SO4)2]2-, whereas Babko and Volkova5 represented the coloured complex ion as [Ti(H 2O2)]4+. Mori, Shibata, Kyuno and Ito 6 regarded the coloured species as [TiO2 aq.]2+ or [Ti(OH)2 (H2O)(H2O2)] 2+, assuming the co-ordination number of titanium to be four. Thus, a variety of constitutions has been proposed to explain the colour-forming species of the titanium complex, based on the investigations carried out in dilute sulphuric acid medium, but the complex has not been isolated so far.
Resumo:
Matthias, Miller and Remeika1 were the first to observe that triglycine sulphate becomes ferroelectric below 47°C. The dielectric properties and the specific heat of this crystal have been studied through the transition temperature by Hoshino, Mitsui, Jona and Pepinsky2. The observed variation of the dielectric properties as a function of temperature in this crystal shows that the transition is of second order. Hoshino et al. concluded that the anomaly is not of the λ-type, since their specific heat - temperature curve showed only a hump. It was decided to investigate the thermal expansion of this crystal as it might throw some light on the nature of the transition.
Resumo:
The utility of rice husk as an adsorbent for metal ions such as iron, zinc and copper from acid mine water was assessed. The adsorption isotherms exhibited Langmuirian behavior and were endothermic in nature. The free energy values for adsorption of the chosen metal ions onto rice husk were found to be highly negative attesting to favorable interaction. Over 99% Fe3+, 98% of Fe2+ and Zn2+ and 95% Cu2+ uptake was achieved from acid mine water, with a concomitant increase in the pH value by two units using rice husk. The remediation studies carried out on acid mine water and simulated acid mine water pretreated with rice husk indicated successful growth of Desulfotomaculum nigrificans (D. nigrificans). The amount of sulphate bioreduction in acid mine water at an initial pH of 5.3 was enhanced by D. nigrificans from 21% to 40% in the presence of rice husk filtrate supplemented with carbon and nitrogen. In simulated acid mine water with fortified husk filtrate, the sulphate reduction was even more extensive, with an enhancement to 73%. Concurrently, almost 90% Fe2+, 89% Zn2+ and 75% Cu2+ bioremoval was attained from simulated acid mine water. Metal adsorption by rice husk was confirmed in desorption experiments in which almost complete removal of metal ions from the rice husk was achieved after two elutions using 1 M HCl. The possible mechanisms of metal ion adsorption onto rice husk and sulphate reduction using D. nigrificans are discussed.
Resumo:
Results of cw wide-line proton magnetic resonance investigations on ammonium sulphate and rubidium ammonium sulphate are presented. The pressure and temperature dependence of some of the properties of ammonium sulphate are explained stressing the importance of the role of the ammonium ions.
Resumo:
Addition of ferrous sulfate, but not ferric chloride, in micromolar concentrations to rat liver mitochondria induced high rates of consumption of oxygen. The oxygen consumed was several times in excess of the reducing capacity of ferrous-iron (O: Fe ratios 5�8). This occurred in the absence of NADPH or any exogenous oxidizable substrate. The reaction terminated on oxidation of ferrous ions. Malondialdehyde (MDA), measured as thiobarbituric acid-reacting material, was produced indicating peroxidation of lipids. The ratio of O2: MDA was about 4: 1. Pretreatment of mitochondria with ferrous sulfate decreased the rate of oxidation (state 3) with glutamate (+malate) as the substrate by about 40% but caused little damage to energy tranduction process as represented by ratios of ADP: O and respiratory control, as well as calcium-stimulated oxygen uptake and energy-dependent uptake of [45Ca]-calcium. Addition of succinate or ubiquinone decreased ferrous iron-induced lipid peroxidation in intact mitochondria. In frozen-thawed mitochondria, addition of succinate enhanced lipid peroxidation whereas ubiquinone had little effect. These results suggest that ferrous-iron can cause peroxidation of mitochondrial lipids without affecting the energy transduction systems, and that succinate and ubiquinone can offer protection from damage due to such ferrous-iron released from the stores within the cells.
Resumo:
Laboratory advection-diffusion tests are performed on two regional soils-Brown Earth and Red Earth-in order to assess their capacity to control contaminant migration with synthetic contaminant solution of sodium sulphate with sodium concentration of 1000 mg/L. The test was designed to study the transport/attenuation behaviour of sodium in the presence of sulphate. Effective diffusion coefficient (De) that takes into consideration of attenuation processes is used. Cation exchange capacity is an important factor for the attenuation of cationic species. Monovalent sodium ion cannot usually replace other cations and the retention of sodium ion is very less. This is particularly true when chloride is anion is solution. However, sulphate is likely to play a role in the attenuation of sodium. Cation exchange capacity and type of exchangeable ions of soils are likely to play an important role. The effect of sulphate ions on the effective diffusion coefficient of sodium, in two different types of soils, of different cation exchange capacity has been studied. The effective diffusion coefficients of sodium ion for both the soils were calculated using Ogata Bank’s equation. It was shown that effective diffusion coefficient of sodium in the presence of sulphate is lower for Brown Earth than for Red Earth due to exchange of sodium with calcium ions from the exchangeable complex of clay. The soil with the higher cation exchange retained more sodium. Consequently, the breakthrough times and the number of pore volumes of sodium ion increase with the cation exchange capacity of soil.
Resumo:
Emf measurements on the galvanic cell Pt, Ta, In + In,O, / Tho,-Y,03 / Cu + C+O, Pt were used to obtain the standard free energy of formation of 1%03fr om 600 to 900°C. Differential thermal analysis was used to detect the decomposition of In2(S0,), under controlled SO2 + O2 + Ar mixtures in thqtemperature range 640-8wC. X-ray diffraction analysis indicated that the decomposition product was 1%03 without an oxywlphate intermediate. The following equations were obtained for the variation of the standard free-energy change(Jlmole) with temperature:
Resumo:
Relation between X-ray scattering intensities, mean square thermal fluctuations and thermodynamic properties. High temperature X-ray diffraction study of liquid Fe-Ni and Fe-Si alloys using reflection and transmission geometries. Calculation of the structure factor as a function of wave vector. Extrapolation to zero wave vector. Calculation of the concentration-concentration correlation function defined by A. B. Bhatia and D. E. Thorton. Computation of thermodynamic quantities of mixing A G, LlH and LlS for the binary alloys. Comparison with direct thermodynamic measurements reported in the literature.