836 resultados para femtosecond
Resumo:
A pump and probe system is developed, where the probe pulse duration tau is less than 60 fs while the pump pulse is stretched up to 150-670 fs. The time-resolved excitation processes and damage mechanisms in the omnidirectional reflectors SiO2/TiO2 and ZnS/MgF2 are studied. It is found that as the pump pulse energy is higher than the threshold value, the reflectivity of the probe pulse decreases rapidly during the former half, rather than around the peak of the pump pulse. A coupled dynamic model based on the avalanche ionization (AI) theory is used to study the excitation processes in the sample and its inverse influences on the pump pulse. The results indicate that as pulse duration is longer than 150 fs, photoionization (PI) and AI both play important roles in the generation of conduction band electrons (CBEs); the CBE density generated via AI is higher than that via PI by a factor of 10(2)-10(4). The theory explains well the experimental results about the ultrafast excitation processes and the threshold fluences. (c) 2006 American Institute of Physics.
Resumo:
We investigate the evolution of filamentation in air by using a longitudinal diffraction method and a plasma fluorescence imaging technique. The diameter of a single filament in which the intensity is clamped increases as the energy of the pump light pulse increases, until multiple filaments appear. (c) 2006 Optical Society of America.
Resumo:
The damage in fused silica and CaF2 crystals induced by wavelength tunable femtosecond lasers is studied. The threshold fluence is observed to increase rapidly with laser wavelength lambda in the region of 250-800 nm, while it is nearly a constant for 800
Resumo:
Uniform ZnSe nanowires are observed on the ablation crater on ZnSe crystal surface irradiated by femtosecond lasers in air, while other parts of the sample surface are not polluted. The nanowire growth rate is about 5 mu m/s, it is higher than that fabricated by chemical vapor deposition method by a factor of 10(4). The nanowire length and diameter can be controlled by varying laser pulse energy and pulse number. The formation mechanism is studied and found to be self-catalyzed vapor-liquid-solid process. (c) 2006 American Institute of Physics.
Resumo:
We report the single-shot damage thresholds of MgF2/ZnS onmidirectional reflector for laser pulse durations from 50 A to 900 fs. A coupled dynamic model is applied to study the damage mechanisms, in which we consider not only the electronic excitation of the material, but also the influence of this excitation-induced changes in the complex refractive index of material on the laser pulse itself. The results indicate that this feedback effect plays a very important role during the damage of material. Based on this model, we calculate the threshold fluences and the time-resolved excitation process of the multiplayer. The theoretical calculations agree well with our experimental results. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The recent advancements of femtosecond (fs) holography are introduced. The experimental requirements and the time resolution are presented. Applications of femtosecond holography to signal processing, and other femtosecond holographic techniques such as femtosecond holographic imaging and microprocessing are detailed. A potential alternative of femtosecond holography is proposed, based on the sectional interference of reference pulse with the time stretched signal pulse. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We investigated the effect of cerium oxide on the precipitation of Ag nanoparticles in silicate glass via a femtosecond laser irradiation and successive annealing. Absorption spectra show that Ce3+ ions may absorb part of the laser energy via multiphoton absorption and release free electrons, resulting in an increase of the concentration of Ag atoms and a decrease of the concentration of hole-trapped color centers, which influence precipitation of the Ag nanoparticles. In addition, we found that the formed Ag-0 may reduce Ce4+ ions to Ce3+ ions during the annealing process, which inhibits the growth of the Ag nanoparticles.
Resumo:
Filamentation formed by self-focusing of intense laser pulses propagating in air is investigated. It is found that the position of filamentation can be controlled continuously by changing the laser power and divergence angle of the laser beam. An analytical model for the process is given.
Resumo:
The 45 degrees scattering of a femtosecond (60 fs) intense laser pulse with a 20 nm FWHM (the full width at half maximum) spectrum centered at 790 nm has been studied experimentally while focused in argon clusters at intensity similar to 10(16) W/cm(2). Scattering spectra under different backing pressures and laser-plasma interaction lengths were obtained, which showed spectral blueshifting, beam refraction and complex modulation. These ionization-induced effects reveal the modulation of laser pulses propagating in plasmas and the existing obstacle in laser cluster interaction at high laser intensity and high electron density.
Resumo:
In this report, we start from Lagrange equation and analyze theoretically the electron dynamics in electromagnetic field. By solving the relativistic government equations of electron, the trajectories of an electron in plane laser pulse, focused laser pulse have been given for different initial conditions. The electron trajectory is determined by its initial momentum, the amplitude, spot size and polarization of the laser pulse. The optimum initial momentum of the electron for LSS (laser synchrotron source) is obtained. Linear polarized laser is more advantaged than circular polarized laser for generating harmonic radiation.
Resumo:
Conical emission is investigated for Ti:sapphire femtosecond laser pulses propagating in water. The colored rings can be observed in the forward direction due to the constructive and destructive interference of transverse wavevector, which are induced by the spatio-temporal gradient of the free-electron density. With increasing input laser energy, due to filamentation and pulse splitting induced by the plasma created by multiphoton excitation of electrons from the valence band to the conduction band, the on-axis spectrum of the conical emission is widely broadened and strongly modulated with respect to input laser spectrum, and finally remains fairly constant at higher laser energy due to intensity clamping in the filaments.
Resumo:
An erratum is presented to correct the propagation loss of the freestanding optical fibers fabricated in glass chip. (c) 2006 Optical Society of America.
Resumo:
Uniform arrays of periodic nanoparticles with 80-nm period are formed on 6H-SiC crystal irradiated by circularly polarized 400-nm femtosecond laser pulses. In order to understand the formation mechanism, the morphology evolvement as a function of laser pulse energy and number is studied. Periodic nanoripples are also formed on the sample surface irradiated by linearly polarized 400-, 510- and 800-nm femtosecond laser pulses. All these results support well the mechanism that second-harmonic generation plays an important role in the formation of periodic nanostructures.
Resumo:
Multiple refocusing of a tightly focused femtosecond laser due to the dynamic transformation between self-focusing and self-defocusing is employed to provide a novel method to produce quasi-periodic voids in glass. It is found that the diameter or the interval of the periodic voids increases with the increasing pulse energy of the laser. The detailed course for producing periodic voids is discussed by analysing the damaged track induced by the tightly focused femtosecond laser pulses. It is suggested that this periodic structure has potential applications in fabrication of three-dimensional optical devices.
Resumo:
We investigate the mechanism of formation of periodic void arrays inside fused silica and BK7 glass irradiated by a tightly focused femtosecond (fs) laser beam. Our results show that the period of each void array is not uniform along the laser propagation direction, and the average period of the void array decreases with increasing pulse number and pulse energy. We propose a mechanism in which a standing electron plasma wave created by the interference of a fs-laser-driven electron wave and its reflected wave is responsible for the formation of the periodic void arrays.