908 resultados para feed preference
Resumo:
We assessed the species composition and abundance of medium and large-sized mammals in an urban forest fragment in the Brazilian Amazon, and recorded the preference of some species for particular phytophysiognomies. We placed nine transects with 20 sand plots each in three phytophysiognomies: open rainforest with a dominance of bamboos (OFB), open rainforest with palm trees (OFP), and dense rainforest (DF). We calculated species abundance as the number of records/plot.day, in a total of 2,700 plots.day. We recorded twelve mammal species; Sylvilagus brasiliensis (Linnaeus, 1758) and Dasyprocta fuliginosa (Wagler, 1831) were the most abundant. The results differed among phytophysiognomies: DF presented the highest mammal diversity, whereas the species composition of OFP was less similar than that of other phytophysiognomies. Rodents showed higher preference for OFP and Sylvilagus brasiliensis was more abundant in OFB. The study area showed high species richness, with the occurrence of mesopredators, but there was a predominance of common species adaptable to disturbed environments, which reflects the severe isolation degree of the forest fragment and the hunting pressure that is still present.
Resumo:
Occurrence of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) was evaluated in sepiolite as a widely employed binder and anti-caking agent for animal feed. Also, naturally contaminated kaolinitic clay was used for comparative purposes. Since sepiolite shows remarkable adsorption properties, particular interest was paid to the extraction steps as they become critical for the final determination of these pollutants in such matrixes. Furthermore, classical Soxhlet extraction using different extracting strategies as well as acid treatment were carried out with simultaneous liquid-liquid extraction. Results obtained depended on the extraction procedure applied. Acid treatment or Soxhlet extraction using a mixture of toluene:ethanol as solvent allowed to reach the minimum requirements of recovery rates. However, Soxhlet extraction using a mixture cyclohexane:toluene as extracting solvent did not allow to comply with minimum specifications for recovery. Significant differences were obtained in TEQ units when acid treatment was applied in comparison to Soxhlet extraction. This fact can be explained because the use of drastic acid conditions allows removing strongly adsorbed analytes which can be uniquely extracted after a total destruction of the crystalline structure of sepiolite. On the contrary, Soxhlet extraction was not able to destroy the structure of sepiolite and as a consequence the PCDDs/Fs were strongly adsorbed in the internal structure of the mineral. From biological point of view the availability of these toxicants constitutes a critical aspect playing an important role in the final decision choosing particular analytical procedures. Then, acid conditions in the digestive tract should be taken into account. In this scenario, a bioaccumulation study was conducted to evaluate the transference of PCDDs/PCDFs from the sepiolite into the animal tissues when fed with feed containing sepiolite. To this end, chickens were used as a model to examine the bioavailability of PCDDs/PCDFs. Four groups of chickens were exposed through their diet to a control feed, feed with 3% w/w sepiolite as additive, feed contaminated with PCDDs/PCDFs at concentration around 2.8 pg WHO-TEQ/g and feed with 2% of a contaminated kaolinitic clay (460 pg TEQ/g mineral). Livers of the four studied groups were analyzed throughout the exposure period. Results of this trial showed that the performance of broilers was not affected by the presence of dioxins at levels tested, and chickens did not show any abnormal behaviour. Dioxins intentionally added to the diet were absorbed and accumulated in the liver in a significant manner, whereas the PCDDs/Fs from sepiolite were not available for chickens since livers from broilers fed 3% sepiolite presented similar WHO-TEQ values than those from broilers fed control diet.
Resumo:
I prove that as long as we allow the marginal utility for money (lambda) to vary between purchases (similarly to the budget) then the quasi-linear and the ordinal budget-constrained models rationalize the same data. However, we know that lambda is approximately constant. I provide a simple constructive proof for the necessary and sufficient condition for the constant lambda rationalization, which I argue should replace the Generalized Axiom of Revealed Preference in empirical studies of consumer behavior. 'Go Cardinals!' It is the minimal requirement of any scientifi c theory that it is consistent with the data it is trying to explain. In the case of (Hicksian) consumer theory it was revealed preference -introduced by Samuelson (1938,1948) - that provided an empirical test to satisfy this need. At that time most of economic reasoning was done in terms of a competitive general equilibrium, a concept abstract enough so that it can be built on the ordinal preferences over baskets of goods - even if the extremely specialized ones of Arrow and Debreu. However, starting in the sixties, economics has moved beyond the 'invisible hand' explanation of how -even competitive- markets operate. A seemingly unavoidable step of this 'revolution' was that ever since, most economic research has been carried out in a partial equilibrium context. Now, the partial equilibrium approach does not mean that the rest of the markets are ignored, rather that they are held constant. In other words, there is a special commodity -call it money - that reflects the trade-offs of moving purchasing power across markets. As a result, the basic building block of consumer behavior in partial equilibrium is no longer the consumer's preferences over goods, rather her valuation of them, in terms of money. This new paradigm necessitates a new theory of revealed preference.
Resumo:
This paper develop and estimates a model of demand estimation for environmental public goods which allows for consumers to learn about their preferences through consumption experiences. We develop a theoretical model of Bayesian updating, perform comparative statics over the model, and show how the theoretical model can be consistently incorporated into a reduced form econometric model. We then estimate the model using data collected for two environmental goods. We find that the predictions of the theoretical exercise that additional experience makes consumers more certain over their preferences in both mean and variance are supported in each case.
Resumo:
Sixty-nine entire male pigs with different halothane genotype (homozygous halothane positive – nn –, n=36; and homozygous halothane negative – NN-, n=33) were fed with a supplementation of magnesium sulphate (Mg) and/or L-tryptophan (Trp) in the diet for 5 days before slaughter. Animals were housed individually and were submitted to stressful ante mortem conditions (mixed in the lorry according to treatments and transported 1 hour on rough roads). Individual feed intake was recorded during the 5-d treatment. At the abattoir, pig behaviour was assessed in the raceway to the stunning system and during the stunning period by exposure to CO2. Muscle pH, colour, water holding capacity, texture and cathepsin activities were determined to assess meat quality. The number of pigs with an individual feed intake lower than 2 kg/d was significantly different among diets (P&0.05; Control: 8.7 %; Mg&Trp: 43.5 %; Trp: 17.4 %) and they were considered to have inadequate supplement intake. During the ante mortem period, 15.2 % of pigs included in the experiment died, and this percentage decreased to 8.7 % in those pigs with a feed intake & 2kg/day, all of them from the stress-sensitive pigs (nn). In general, no differences were observed in the behaviour of pigs along the corridor leading to the stunning system and inside the CO2 stunning system. During the stunning procedure, Trp diet showed shorter periods of muscular excitation than control and Mg&Trp diets. The combination of a stressful ante mortem treatment and Mg&Trp supplementation led to carcasses with high incidence of severe skin lesions. Different meat quality results were found when considering all pigs or considering only those with adequate supplement intake. In this later case, Trp increased pH45 (6.15) vs Control diet (5.96) in the Longissimus thoracis (LT) muscle (P&0.05) and pH at 24h (Trp: 5.59 vs C: 5.47) led to a higher incidence of dark, firm and exudative (DFD) traits in SM muscle (P&0.05). Genotype affected negatively all the meat quality traits. Seventy-five percent of LT and 60.0 % of the SM muscles from nn pigs were classified as pale, soft and exudative (PSE), while none of the NN pigs showed these traits (P&0.0001). No significant differences were found between genotypes on the incidence of DFD meat. Due to the negative effects observed in the Mg&Trp group in feed intake and carcass quality, the utilization of a mixture of magnesium sulphate and tryptophan is not recommended.
Resumo:
We experimentally investigate in the laboratory two prominent mechanisms that are employed in school choice programs to assign students to public schools. We study how individual behavior is influenced by preference intensities and risk aversion. Our main results show that (a) the Gale-Shapley mechanism is more robust to changes in cardinal preferences than the Boston mechanism independently of whether individuals can submit a complete or only a restricted ranking of the schools and (b) subjects with a higher degree of risk aversion are more likely to play "safer" strategies under the Gale-Shapley but not under the Boston mechanism. Both results have important implications for the efficiency and the stability of the mechanisms.
Resumo:
Learning and immunity are two adaptive traits with roles in central aspects of an organism's life: learning allows adjusting behaviours in changing environments, while immunity protects the body integrity against parasites and pathogens. While we know a lot about how these two traits interact in vertebrates, the interactions between learning and immunity remain poorly explored in insects. During my PhD, I studied three possible ways in which these two traits interact in the model system Drosophila melanogaster, a model organism in the study of learning and in the study of immunity. Learning can affect the behavioural defences against parasites and pathogens through the acquisition of new aversions for contaminated food for instance. This type of learning relies on the ability to associate a food-related cue with the visceral sickness following ingestion of contaminated food. Despite its potential implication in infection prevention, the existence of pathogen avoidance learning has been rarely explored in invertebrates. In a first part of my PhD, I tested whether D. melanogaster, which feed on food enriched in microorganisms, innately avoid the orally-acquired 'novel' virulent pathogen Pseudomonas entomophila, and whether it can learn to avoid it. Although flies did not innately avoid this pathogen, they decreased their preference for contaminated food over time, suggesting the existence of a form of learning based likely on infection-induced sickness. I further found that flies may be able to learn to avoid an odorant which was previously associated with the pathogen, but this requires confirmation with additional data. If this is confirmed, this would be the first time, to my knowledge, that pathogen avoidance learning is reported in an insect. The detrimental effect of infection on cognition and more specifically on learning ability is well documented in vertebrates and in social insects. While the underlying mechanisms are described in detail in vertebrates, experimental investigations are lacking in invertebrates. In a second part of my PhD, I tested the effect of an oral infection with natural pathogens on associative learning of D. melanogaster. By contrast with previous studies in insects, I found that flies orally infected with the virulent P. entomophila learned better the association of an odorant with mechanical shock than uninfected flies. The effect seems to be specific to a gut infection, and so far I have not been able to draw conclusions on the respective contributions of the pathogen's virulence and of the flies' immune activity in this effect. Interestingly, infected flies may display an increased sensitivity to physical pain. If the learning improvement observed in infected flies was due partially to the activity of the immune system, my results would suggest the existence of physiological connections between the immune system and the nervous system. The basis of these connections would then need to be addressed. Learning and immunity are linked at the physiological level in social insects. Physiological links between traits often result from the expression of genetic links between these traits. However, in social insects, there is no evidence that learning and immunity may be involved in an evolutionary trade-off. I previously reported a positive effect of infection on learning in D. melanogaster. This might suggest that a positive genetic link could exist between learning and immunity. We tested this hypothesis with two approaches: the diallel cross design with inbred lines, and the isofemale lines design. The two approaches provided consistent results: we found no additive genetic correlation between learning and resistance to infection with the diallel cross, and no genetic correlation in flies which are not yet adapted to laboratory conditions in isofemale lines. Consistently with the literature, the two studies suggested that the positive effect of infection on learning I observed might not be reflected by a positive evolutionary link between learning and immunity. Nevertheless, the existence of complex genetic relationships between the two traits cannot be excluded. - L'apprentissage et l'immunité sont deux caractères à valeur adaptative impliqués dans des aspects centraux de la vie d'un organisme : l'apprentissage permet d'ajuster les comportements pour faire face aux changements de l'environnement, tandis que l'immunité protège l'intégrité corporelle contre les attaques des parasites et des pathogènes. Alors que les interactions entre l'apprentissage et l'immunité sont bien documentées chez les vertébrés, ces interactions ont été très peu étudiées chez les insectes. Pendant ma thèse, je me suis intéressée à trois aspects des interactions possibles entre l'apprentissage et l'immunité chez la mouche du vinaigre Drosophila melanogaster, qui est un organisme modèle dans l'étude à la fois de l'apprentissage et de l'immunité. L'apprentissage peut affecter les défenses comportementales contre les parasites et les pathogènes par l'acquisition de nouvelles aversions pour la nourriture contaminée par exemple. Ce type d'apprentissage repose sur la capacité à associer une caractéristique de la nourriture avec la maladie qui suit l'ingestion de cette nourriture. Malgré les implications potentielles pour la prévention des infections, l'évitement appris des pathogènes a été rarement étudié chez les invertébrés. Dans une première partie de ma thèse, j'ai testé si les mouches, qui se nourrissent sur des milieux enrichis en micro-organismes, évitent de façon innée un 'nouveau' pathogène virulent Pseudomonas entomophila, et si elles ont la capacité d'apprendre à l'éviter. Bien que les mouches ne montrent pas d'évitement inné pour ce pathogène, elles diminuent leur préférence pour de la nourriture contaminée dans le temps, suggérant l'existence d'une forme d'apprentissage basée vraisemblablement sur la maladie générée par l'infection. J'ai ensuite observé que les mouches semblent être capables d'apprendre à éviter une odeur qui était au préalable associée avec ce pathogène, mais cela reste à confirmer par la collecte de données supplémentaires. Si cette observation est confirmée, cela sera la première fois, à ma connaissance, que l'évitement appris des pathogènes est décrit chez un insecte. L'effet détrimental des infections sur la cognition et plus particulièrement sur les capacités d'apprentissage est bien documenté chez les vertébrés et les insectes sociaux. Alors que les mécanismes sous-jacents sont détaillés chez les vertébrés, des études expérimentales font défaut chez les insectes. Dans une seconde partie de ma thèse, j'ai mesuré les effets d'une infection orale par des pathogènes naturels sur les capacités d'apprentissage associatif de la drosophile. Contrairement aux études précédentes chez les insectes, j'ai trouvé que les mouches infectées par le pathogène virulent P. entomophila apprennent mieux à associer une odeur avec des chocs mécaniques que des mouches non infectées. Cet effet semble spécifique à l'infection orale, et jusqu'à présent je n'ai pas pu conclure sur les contributions respectives de la virulence du pathogène et de l'activité immunitaire des mouches dans cet effet. De façon intéressante, les mouches infectées pourraient montrer une plus grande réactivité à la douleur physique. Si l'amélioration de l'apprentissage observée chez les mouches infectées était due en partie à l'activité du système immunitaire, mes résultats suggéreraient l'existence de connections physiologiques entre le système immunitaire et le système nerveux. Les mécanismes de ces connections seraient à explorer. L'apprentissage et l'immunité sont liés sur un plan physiologique chez les insectes sociaux. Les liens physiologiques entre les caractères résultent souvent de l'expression de liens entre ces caractères au niveau génétique. Cependant, chez les insectes sociaux, il n'y a pas de preuve que l'apprentissage et l'immunité soient liés par un compromis évolutif. J'ai précédemment rapporté un effet positif de l'infection sur l'apprentissage chez la drosophile. Cela pourrait suggérer qu'une relation génétique positive existerait entre l'apprentissage et l'immunité. Nous avons testé cette hypothèse par deux approches : le croisement diallèle avec des lignées consanguines, et les lignées isofemelles. Les deux approches ont fournies des résultats similaires : nous n'avons pas détecté de corrélation génétique additive entre l'apprentissage et la résistance à l'infection avec le croisement diallèle, et pas de corrélation génétique chez des mouches non adaptées aux conditions de laboratoire avec les lignées isofemelles. En ligne avec la littérature, ces deux études suggèrent que l'effet positif de l'infection sur l'apprentissage que j'ai précédemment observé ne refléterait pas un lien évolutif positif entre l'apprentissage et l'immunité. Néanmoins, l'existence de relations génétiques complexes n'est pas exclue.
Resumo:
Recirculating virgin CD4+ T cells spend their life migrating between the T zones of secondary lymphoid tissues where they screen the surface of interdigitating dendritic cells. T-cell priming starts when processed peptides or superantigen associated with class II MHC molecules are recognised. Those primed T cells that remain within the lymphoid tissue move to the outer T zone, where they interact with B cells that have taken up and processed antigen. Cognate interaction between these cells initiates immunoglobulin (Ig) class switch-recombination and proliferation of both B and T cells; much of this growth occurs outside the T zones B cells migrate to follicles, where they form germinal centres, and to extrafollicular sites of B-cell growth, where they differentiate into mainly short-lived plasma cells. T cells do not move to the extrafollicular foci, but to the follicles; there they proliferate and are subsequently involved in the selection of B cells that have mutated their Ig variable-region genes. During primary antibody responses T-cell proliferation in follicles produces many times the peak number of T cells found in that site: a substantial proportion of the CD4+ memory T-cell pool may originate from growth in follicles.
Resumo:
In Central Amazon, Brazil, the tabanid Phorcotabanus cinereus (Wiedemann) was recorded attacking the native duck Cairina moschata (Linnaeus) (Anseriformes, Anatidae). The flight and behavior of the tabanid during the attacks and the host's defenses were videotaped and analyzed in slow motion. The tabanid was recorded flying rapidly around the heads of the ducks before landing. Landing always took place on the beak, and then the tabanid walked to the fleshy caruncle on the basal part of the beak to bite and feed. Firstly the duck defends itself through lateral harsh head movements, and then, when it is being bitten, it defends itself by rubbing its head on the body, or dipping the head into water, when swimming. If disturbed, the fly resumed the same pattern of flight as before and would generally try to land again on the same host and bite in the same place. This feeding activity was observed predominantly between 9:30 am and 4:30 pm and always in open areas, near aquatic environments, from June 1996 to January 1997, the dry season in Central Amazon. To test the attractiveness of other animals to P. cinereus, mammals, caimans and domestic and wild birds were placed in suitable habitat and the response of P. cinereus observed. P. cinereus did not attack these animals, suggesting that this species has a preference for ducks, which are plentiful in the region.