894 resultados para feature descriptor
Resumo:
El treball Ressuscitant a Disney: Rastrejant el sempre present esperit de Walt Disney en els llargmetratges animats de l'era Michael Eisner (1984-2004) pretén definir i analitzar les característiques, tant respecte al procés creatiu com en la definició de contingut, integrades en els clàssics originals de Disney per, a continuació, demostrar que aquestes van ser recuperades i implementades de nou després de la mort de Walt Disney -amb lleus adaptacions- per donar lloc a una segona edat d'or de l'animació
Resumo:
In this paper, we propose a new supervised linearfeature extraction technique for multiclass classification problemsthat is specially suited to the nearest neighbor classifier (NN).The problem of finding the optimal linear projection matrix isdefined as a classification problem and the Adaboost algorithmis used to compute it in an iterative way. This strategy allowsthe introduction of a multitask learning (MTL) criterion in themethod and results in a solution that makes no assumptions aboutthe data distribution and that is specially appropriated to solvethe small sample size problem. The performance of the methodis illustrated by an application to the face recognition problem.The experiments show that the representation obtained followingthe multitask approach improves the classic feature extractionalgorithms when using the NN classifier, especially when we havea few examples from each class
Resumo:
Peer-reviewed
Resumo:
This work investigates performance of recent feature-based matching techniques when applied to registration of underwater images. Matching methods are tested versus different contrast enhancing pre-processing of images. As a result of the performed experiments for various dominating in images underwater artifacts and present deformation, the outperforming preprocessing, detection and description methods are proposed
Resumo:
In this paper the authors propose a new closed contour descriptor that could be seen as a Feature Extractor of closed contours based on the Discrete Hartley Transform (DHT), its main characteristic is that uses only half of the coefficients required by Elliptical Fourier Descriptors (EFD) to obtain a contour approximation with similar error measure. The proposed closed contour descriptor provides an excellent capability of information compression useful for a great number of AI applications. Moreover it can provide scale, position and rotation invariance, and last but not least it has the advantage that both the parameterization and the reconstructed shape from the compressed set can be computed very efficiently by the fast Discrete Hartley Transform (DHT) algorithm. This Feature Extractor could be useful when the application claims for reversible features and when the user needs and easy measure of the quality for a given level of compression, scalable from low to very high quality.
Resumo:
Alzheimer׳s disease (AD) is the most common type of dementia among the elderly. This work is part of a larger study that aims to identify novel technologies and biomarkers or features for the early detection of AD and its degree of severity. The diagnosis is made by analyzing several biomarkers and conducting a variety of tests (although only a post-mortem examination of the patients’ brain tissue is considered to provide definitive confirmation). Non-invasive intelligent diagnosis techniques would be a very valuable diagnostic aid. This paper concerns the Automatic Analysis of Emotional Response (AAER) in spontaneous speech based on classical and new emotional speech features: Emotional Temperature (ET) and fractal dimension (FD). This is a pre-clinical study aiming to validate tests and biomarkers for future diagnostic use. The method has the great advantage of being non-invasive, low cost, and without any side effects. The AAER shows very promising results for the definition of features useful in the early diagnosis of AD.
Resumo:
Objective. Recently, significant advances have been made in the early diagnosis of Alzheimer’s disease from EEG. However, choosing suitable measures is a challenging task. Among other measures, frequency Relative Power and loss of complexity have been used with promising results. In the present study we investigate the early diagnosis of AD using synchrony measures and frequency Relative Power on EEG signals, examining the changes found in different frequency ranges. Approach. We first explore the use of a single feature for computing the classification rate, looking for the best frequency range. Then, we present a multiple feature classification system that outperforms all previous results using a feature selection strategy. These two approaches are tested in two different databases, one containing MCI and healthy subjects (patients age: 71.9 ± 10.2, healthy subjects age: 71.7 ± 8.3), and the other containing Mild AD and healthy subjects (patients age: 77.6 ± 10.0; healthy subjects age: 69.4± 11.5). Main Results. Using a single feature to compute classification rates we achieve a performance of 78.33% for the MCI data set and of 97.56 % for Mild AD. Results are clearly improved using the multiple feature classification, where a classification rate of 95% is found for the MCI data set using 11 features, and 100% for the Mild AD data set using 4 features. Significance. The new features selection method described in this work may be a reliable tool that could help to design a realistic system that does not require prior knowledge of a patient's status. With that aim, we explore the standardization of features for MCI and Mild AD data sets with promising results.
Resumo:
In this study, feature selection in classification based problems is highlighted. The role of feature selection methods is to select important features by discarding redundant and irrelevant features in the data set, we investigated this case by using fuzzy entropy measures. We developed fuzzy entropy based feature selection method using Yu's similarity and test this using similarity classifier. As the similarity classifier we used Yu's similarity, we tested our similarity on the real world data set which is dermatological data set. By performing feature selection based on fuzzy entropy measures before classification on our data set the empirical results were very promising, the highest classification accuracy of 98.83% was achieved when testing our similarity measure to the data set. The achieved results were then compared with some other results previously obtained using different similarity classifiers, the obtained results show better accuracy than the one achieved before. The used methods helped to reduce the dimensionality of the used data set, to speed up the computation time of a learning algorithm and therefore have simplified the classification task
Resumo:
Green IT is a term that covers various tasks and concepts that are related to reducing the environmental impact of IT. At enterprise level, Green IT has significant potential to generate sustainable cost savings: the total amount of devices is growing and electricity prices are rising. The lifecycle of a computer can be made more environmentally sustainable using Green IT, e.g. by using energy efficient components and by implementing device power management. The challenge using power management at enterprise level is how to measure and follow-up the impact of power management policies? During the thesis a power management feature was developed to a configuration management system. The feature can be used to automatically power down and power on PCs using a pre-defined schedule and to estimate the total power usage of devices. Measurements indicate that using the feature the device power consumption can be monitored quite precisely and the power consumption can be reduced, which generates electricity cost savings and reduces the environmental impact of IT.
Resumo:
Developing software is a difficult and error-prone activity. Furthermore, the complexity of modern computer applications is significant. Hence,an organised approach to software construction is crucial. Stepwise Feature Introduction – created by R.-J. Back – is a development paradigm, in which software is constructed by adding functionality in small increments. The resulting code has an organised, layered structure and can be easily reused. Moreover, the interaction with the users of the software and the correctness concerns are essential elements of the development process, contributing to high quality and functionality of the final product. The paradigm of Stepwise Feature Introduction has been successfully applied in an academic environment, to a number of small-scale developments. The thesis examines the paradigm and its suitability to construction of large and complex software systems by focusing on the development of two software systems of significant complexity. Throughout the thesis we propose a number of improvements and modifications that should be applied to the paradigm when developing or reengineering large and complex software systems. The discussion in the thesis covers various aspects of software development that relate to Stepwise Feature Introduction. More specifically, we evaluate the paradigm based on the common practices of object-oriented programming and design and agile development methodologies. We also outline the strategy to testing systems built with the paradigm of Stepwise Feature Introduction.
Resumo:
In recent years the analysis and synthesis of (mechanical) control systems in descriptor form has been established. This general description of dynamical systems is important for many applications in mechanics and mechatronics, in electrical and electronic engineering, and in chemical engineering as well. This contribution deals with linear mechanical descriptor systems and its control design with respect to a quadratic performance criterion. Here, the notion of properness plays an important role whether the standard Riccati approach can be applied as usual or not. Properness and non-properness distinguish between the cases if the descriptor system is exclusively governed by the control input or by its higher-order time-derivatives additionally. In the unusual case of non-proper systems a quite different problem of optimal control design has to be considered. Both cases will be solved completely.
Resumo:
In this paper a computer program to model and support product design is presented. The product is represented through a hierarchical structure that allows the user to navigate across the products components, and it aims at facilitating each step of the detail design process. A graphical interface was also developed, which shows visually to the user the contents of the product structure. Features are used as building blocks for the parts that compose the product, and object-oriented methodology was used as a means to implement the product structure. Finally, an expert system was also implemented, whose knowledge base rules help the user design a product that meets design and manufacturing requirements.
Resumo:
The usage of digital content, such as video clips and images, has increased dramatically during the last decade. Local image features have been applied increasingly in various image and video retrieval applications. This thesis evaluates local features and applies them to image and video processing tasks. The results of the study show that 1) the performance of different local feature detector and descriptor methods vary significantly in object class matching, 2) local features can be applied in image alignment with superior results against the state-of-the-art, 3) the local feature based shot boundary detection method produces promising results, and 4) the local feature based hierarchical video summarization method shows promising new new research direction. In conclusion, this thesis presents the local features as a powerful tool in many applications and the imminent future work should concentrate on improving the quality of the local features.
Resumo:
Adrenocortical tumors (ACT) in children under 15 years of age exhibit some clinical and biological features distinct from ACT in adults. Cell proliferation, hypertrophy and cell death in adrenal cortex during the last months of gestation and the immediate postnatal period seem to be critical for the origin of ACT in children. Studies with large numbers of patients with childhood ACT have indicated a median age at diagnosis of about 4 years. In our institution, the median age was 3 years and 5 months, while the median age for first signs and symptoms was 2 years and 5 months (N = 72). Using the comparative genomic hybridization technique, we have reported a high frequency of 9q34 amplification in adenomas and carcinomas. This finding has been confirmed more recently by investigators in England. The lower socioeconomic status, the distinctive ethnic groups and all the regional differences in Southern Brazil in relation to patients in England indicate that these differences are not important to determine 9q34 amplification. Candidate amplified genes mapped to this locus are currently being investigated and Southern blot results obtained so far have discarded amplification of the abl oncogene. Amplification of 9q34 has not been found to be related to tumor size, staging, or malignant histopathological features, nor does it seem to be responsible for the higher incidence of ACT observed in Southern Brazil, but could be related to an ACT from embryonic origin.