969 resultados para explosive precursors
Resumo:
Yttria stabilized zirconia thin films have been deposited by RF plasma enhanced MOCVD technique on silicon substrates at substrate temperature of 400 degrees C. Plasma of precursor vapors of (2,7,7-trimethyl-3,5-octanedionate) yttrium (known as Y(tod)(3)), (2,7,7-trimethyl-3,5-octanedionate) zirconium (known as Zr(tod)(4)), oxygen and argon gases is used for deposition. To the best of our knowledge, plasma assisted MOCVD of YSZ films using octanediaonate precursors have not been reported in the literature so far. The deposited films have been characterized by GIXRD, FTIR, XPS, FESEM, AFM, XANES, EXAFS, EDAX and spectroscopic ellipsometry. Thickness of the films has been measured by stylus profilometer while tribological property measurement has been done to study mechanical behavior of the coatings. Characterization by different techniques indicates that properties of the films are dependent on the yttria content as well as on the structure of the films. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Silver indium sulfide (AgInS2) thin films are deposited by sequential sputtering of metallic precursor Ag/In] followed by sulfurization. Effect of substrate temperature (Tsub) during sulfurization process on the film growth is studied by varying the substrate temperature from 350 to 500 degrees C. Films prepared above 350 degrees C showed a mixture of orthorhombic and tetragonal phases of AgInS2 with tetragonal phase being dominant. Better crystalline, nearly stoichiometric and p-type films are obtained at a substrate temperature of 500 degrees C. The characteristic A(1) mode of AgInS2 chalcopyrite structure is observed in the Raman spectra at 274 cm(-1) for the films prepared above 350 degrees C. The grain size of the film increases from 489 to 895 nm with the increase in substrate temperature. The binding energies of the constituent elements are determined using XPS. The band gap of AgInS2 films is in the range of 1.64-1.92 eV and the absorption coefficient is found to be >10(4) cm(-1). Preliminary studies on the AgInS2/ZnS solar cell showed an efficiency of 0.3%. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
金刚石的石墨化对于炸药爆轰过程中金刚石的产出率有重要的影响。对碳相图进行了讨论,提出采用金刚石2石墨的动力学平衡线来评价炸药爆轰过程中金刚石的石墨化。通过数值模拟,对炸药爆轰过程中金刚石的石墨化进行了分析和讨论。
Resumo:
The high-field properties of polycrystalline superconducting TlBaCaCuO films fabricated by the incorporation of thallium vapour into air-atomised BaCaCuO precursors are described. Thick films with Tc values in the range 106-111 K have been prepared on polycrystalline yttria-stabilised zirconia substrates. The surface morphology, crystal structure and composition of the films are related to their high-field transport and magnetisation properties. Typical 10 mm × 9 mm films show Jc values > 1×104 A/cm2 at 77 K (0 T). The best film has a Jc=1.3×104 A/cm2 (Ic=3.6 A) at 77 K (0 T). Films prepared on 26 mm×9 mm substrates show typical large-area Jc values > 0.5×104 A/cm2 (77 K, 0 T). A square planar specimen of dimensions 4.3 mm ×4.3 mm exhibited magnetisation Jc values=1.2×105 A/cm2 at 4.2 K (0.1 T), 9.3×104 A/cm2 at 10 K (0.1 T), 3.3×104 A/ cm2 at 4 K (8 T), and 1.6×104 A/cm2 at 10 K (8 T). © 1994.
Resumo:
This paper addresses the explosive consolidation of amorphous cobalt-based alloys. Using the experimental setup introduced in the present paper, specimens with high compact density, excellent magnetic properties and great wearability have been made. In comparison with permalloy and ferrite, the present specimens exhibit superior magnetic properties. Therefore, the compact is deemed as being a promising material for magnetic recording heads.
Resumo:
This paper presents a newly developed method of manufacturing spherical pressure vessels based on the technology of non-die explosive forming. Compared with the traditional method, this technology does not need any dies and pressing equipment, so that the cost of the production process can be greatly reduced, especially for vessels of less than 100 m3 capacity.
Resumo:
A study of the two-dimensional flow pattern of particles in consolidation process under explosive-implosive shock waves has been performed to further understand the mechanism of shock-wave consolidation of metal powder, in which bunched low-carbon steel wires were used instead of powder. Pressure in the compact ranges from 6 to 30 GPa. Some wires were electroplated with brass, some pickled. By this means, the flow pattern at particle surfaces was observed. The interparticle bonding and microstructure have been investigated systematically for the consolidated specimens by means of optical and electron microscopy, as well as by microhardness. The experimental results presented here are qualitatively consistent with Williamson's numerical simulation result when particle arrangement is close packed, but yield more extensive information. The effect of surface condition of particle on consolidation quality was also studied in order to explore ways of increasing the strength of the compacts. Based on these experiments, a physical model for metal powder shock consolidation has been established.
Resumo:
This paper analyzes the existence of an inflation tax Laffer curve (ITLC) in the context of two standard optimizing monetary models: a cash-in-advance model and a money in the utility function model. Agents’ preferences are characterized in the two models by a constant relative risk aversion utility function. Explosive hyperinflation rules out the presence of an ITLC. In the context of a cash-in-advance economy, this paper shows that explosive hyperinflation is feasible and thus an ITLC is ruled out whenever the relative risk aversion parameter is greater than one. In the context of an optimizing model with money in the utility function, this paper firstly shows that an ITLC is ruled out. Moreover, it is shown that explosive hyperinflations are more likely when the transactions role of money is more important. However, hyperinflationary paths are not feasible in this context unless certain restrictions are imposed.
Resumo:
The microstructural heterogeneity and stress fluctuation play important roles in the failure process of brittle materials. In this paper, a generalized driven nonlinear threshold model with stress fluctuation is presented to study the effects of microstructural heterogeneity on continuum damage evolution. As an illustration, the failure process of cement material under explosive loading is analyzed using the model. The result agrees well with the experimental one, which proves the efficiency of the model.
Resumo:
Since the early years of the 21st century, and in particular since 2007, the U.S. has been awakening rapidly to the fact that climate change is underway and that even if stringent efforts are undertaken to mitigate greenhouse gas emissions, adaptation to the unavoidable impacts from the existing commitment to climate change is still needed and needs to be begun now. This report provides an historical overview of the public, political, and scientific concern with adaptation in the United States. It begins by briefly distinguishing ongoing, historical adaptation to environmental circumstances from deliberate adaptation to human‐induced climate change. It then describes the shift from the early concerns with climate change and adaptation to the more recent awakening to the need for a comprehensive approach to managing the risks from climate change. Ranging from the treatment of the topic in the news media to the drafting of bills in Congress, to state and local government activities with considerable engagement of NGOs, scientists and consultants, it is apparent that adaptation has finally, and explosively, emerged on the political agenda as a legitimate and needed subject for debate. At the same time, the current policy rush is not underlain by widespread public engagement and mobilization nor does it rest on a solid research foundation. Funding for vulnerability and adaptation research, establishing adequate decision support institutions, as well as the building of the necessary capacity in science, the consulting world, and in government agencies, lags far behind the need. (PDF contains 42 pages)
Resumo:
Transparent and homogeneous aluminophosphate gels and glasses have been widely synthesized through an aqueous sol-gel route, extending significantly the glass-forming range compared to that accessible via the melt-cooling route. Different phosphorus precursors, sodium polyphosphate (NaPO3) and orthophosphate species (NaH2PO4 and/or H3PO4) were compared with regard to the macroscopic properties and the microscopic structure of the resultant gels and glasses as characterized by extensive high-resolution liquid- and solid-state NMR. Sodium polyphosphate solution results in a substantially wider composition range of homogenous gel formation than orthophosphate solutions, and the two routes produce significant structural differences in the sol and xerogel states. Nevertheless, the structures of the glasses obtained upon gel annealing above 400 degrees C are independent of the P-precursors used. (c) 2007 Elsevier B.V. All rights reserved.