886 resultados para evoked brain stem auditory response


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les personnes ayant un trouble du spectre autistique (TSA) manifestent des particularités perceptives. En vision, des travaux influents chez les adultes ont mené à l’élaboration d’un modèle explicatif du fonctionnement perceptif autistique qui suggère que l’efficacité du traitement visuel varie en fonction de la complexité des réseaux neuronaux impliqués (Hypothèse spécifique à la complexité). Ainsi, lorsque plusieurs aires corticales sont recrutées pour traiter un stimulus complexe (e.g., modulations de texture; attributs de deuxième ordre), les adultes autistes démontrent une sensibilité diminuée. À l’inverse, lorsque le traitement repose principalement sur le cortex visuel primaire V1 (e.g., modulations locales de luminance; attributs de premier ordre), leur sensibilité est augmentée (matériel statique) ou intacte (matériel dynamique). Cette dissociation de performance est spécifique aux TSA et peut s’expliquer, entre autre, par une connectivité atypique au sein de leur cortex visuel. Les mécanismes neuronaux précis demeurent néanmoins méconnus. De plus, on ignore si cette signature perceptuelle est présente à l’enfance, information cruciale pour les théories perceptives de l’autisme. Le premier volet de cette thèse cherche à vérifier, à l’aide de la psychophysique et l’électrophysiologie, si la double dissociation de performance entre les attributs statiques de premier et deuxième ordre se retrouve également chez les enfants autistes d’âge scolaire. Le second volet vise à évaluer chez les enfants autistes l’intégrité des connexions visuelles descendantes impliquées dans le traitement des textures. À cet effet, une composante électrophysiologique reflétant principalement des processus de rétroaction corticale a été obtenue lors d’une tâche de ségrégation des textures. Les résultats comportementaux obtenus à l’étude 1 révèlent des seuils sensoriels similaires entre les enfants typiques et autistes à l’égard des stimuli définis par des variations de luminance et de texture. Quant aux données électrophysiologiques, il n’y a pas de différence de groupe en ce qui concerne le traitement cérébral associé aux stimuli définis par des variations de luminance. Cependant, contrairement aux enfants typiques, les enfants autistes ne démontrent pas une augmentation systématique d’activité cérébrale en réponse aux stimuli définis par des variations de texture pendant les fenêtres temporelles préférentiellement associées au traitement de deuxième ordre. Ces différences d’activation émergent après 200 ms et engagent les aires visuelles extrastriées des régions occipito-temporales et pariétales. Concernant la connectivité cérébrale, l’étude 2 indique que les connexions visuelles descendantes sont fortement asymétriques chez les enfants autistes, en défaveur de la région occipito-temporale droite. Ceci diffère des enfants typiques pour qui le signal électrophysiologique reflétant l’intégration visuo-corticale est similaire entre l’hémisphère gauche et droit du cerveau. En somme, en accord avec l’hypothèse spécifique à la complexité, la représentation corticale du traitement de deuxième ordre (texture) est atypiquement diminuée chez les enfants autistes, et un des mécanismes cérébraux impliqués est une altération des processus de rétroaction visuelle entre les aires visuelles de haut et bas niveau. En revanche, contrairement aux résultats obtenus chez les adultes, il n’y a aucun indice qui laisse suggérer la présence de mécanismes supérieurs pour le traitement de premier ordre (luminance) chez les enfants autistes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatic encephalopathy (HE) is a complex neuropsychiatric syndrome that typically develops as a result of acute liver failure or chronic liver disease. Brain edema is a common feature associated with HE. In acute liver failure, brain edema contributes to an increase in intracranial pressure, which can fatally lead to brain stem herniation. In chronic liver disease, intracranial hypertension is rarely observed, even though brain edema may be present. This discrepancy in the development of intracranial hypertension in acute liver failure versus chronic liver disease suggests that brain edema plays a different role in relation to the onset of HE. Furthermore, the pathophysiological mechanisms involved in the development of brain edema in acute liver failure and chronic liver disease are dissimilar. This review explores the types of brain edema, the cells, and pathogenic factors involved in its development, while emphasizing the differences in acute liver failure versus chronic liver disease. The implications of brain edema developing as a neuropathological consequence of HE, or as a cause of HE, are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kinetic parameters of brain glutamate dehydrogenase (GDH) were compared in the brain stem, cerebellum and cerebral cortex of three weeks and one year old streptozotocin (STZ) induced four day diabetic rats with respective controls. A single intrafemoral dose of STZ (60mg/Kg body weight) was administered to induce diabetes in both age groups. After four days the blood glucose levels showed a significant increase in the diabetic animals of both age groups compared with the respective controls. The increase in blood glucose was significant in one year old compared to the three weeks old diabetic rats. The Vmm of the enzyme was decreased in all the brain regions studied, of the three weeks old diabetic rats without any significant change in the Km. In the adult the Vmax of GDH was increased in cerebellum and brain stem but was unchanged in the cerebral cortex. The K. was unchanged in cerebellum and cerebral cortex but was increased in the brain stem. These results suggest there may be an important regulatory role of the glutamate pathway in brain neural network disturbances and neuronal degeneration in diabetes as a function of age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

5-HT2A receptor binding parameters were studied in the cerebral cortex and brain stem of control, diabetic, insulin, insulin + tryptophan and tr3yptophan treated streptozotocin diabetic rats. Scatchard analysis using selective antagonist, [-H](±)2,3-dimethoxyphenyl-l-[2-(4-piperidine)- methanol] ([3H]MDL100907) in cerebral cortex of diabetic rats showed a significant decrease in dissociation constant (Kd) without any change in maximal binding (Bm). Competition binding studies in cerebral cortex using ketanserin against [3H]MDL100907 showed the appearance of an additional site in the low affinity region during diabetes. In the brain stem, Scatchard analysis showed a significant increase in Bmax and Kd. Displacement studies showed a shift in the receptor affinity towards a low affinity state. All these altered parameters in diabetes were reversed to control level by insulin, insulin + tryptophan and tryptophan treatments. Tryptophan treatment is suggested to reverse the altered 5-HT2Abinding and blood glucose level to control status by increasing the brain 5-HT content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study demonstrate the functional alterations of the GABAA and GABAB receptors and the gene expression during the regeneration of pancreas following partial pancreatectomy. The role of these receptors in insulin secretion and pancreatic DNA synthesis using the specific agonists and antagonists also are studied in vitro. The alterations of GABAA and GABAR receptor function and gene expression in the brain stem, crebellum and hypothalamus play an important role in the sympathetic regulation of insulin secretion during pancreatic regeneration. Previous studies have given much information linking functional interaction between GABA and the peripheral nervous system. The involvement of specific receptor subtypes functional regulation during pancreatic regeneration has not given emphasis and research in this area seems to be scarce. We have observed a decreased GABA content, down regulation of GABAA receptors and an up regulation of GABAB receptors in the cerebral cortex, brain stem and hypothalamus. Real Time-PCR analysis confirmed the receptor data in the brain regions. These alterations in the GABAA and GABAB receptors of the brain are suggested to govern the regenerative response and growth regulation of the pancreas through sympathetic innervation. In addition, receptor binding studies and Real Time-PCR analysis revealed that during pancreatic regeneration GABAA receptors were down regulated and GABAB receptors were up regulated in pancreatic islets. This suggests an inhibitory role for GABAA receptors in islet cell proliferation i.e., the down regulation of this receptor facilitates proliferation. Insulin secretion study during 1 hour showed GABA has inhibited the insulin secretion in a dose dependent manner in normal and hyperglycaemic conditions. Bicuculline did not antagonize this effect. GABAA agonist, muscimol inhibited glucose stimulated insulin secretion from pancreatic islets except in the lowest concentration of 1O-9M in presence of 4mM glucose.Musclmol enhanced insulin secretion at 10-7 and 10-4M muscimol in presence of 20mM glucose- 4mM glucose represents normal and 20mM represent hyperglycaemic conditions. GABAB agonist, baclofen also inhibited glucose induced insulin secretion and enhanced at the concentration of 1O-5M at 4mM glucose and at 10-9M baclofen in presence of 20mM glucose. This shows a differential control of the GABAA and GABAB receptors over insulin release from the pancreatic islets. During 24 hours in vitro insulin secretion study it showed that low concentration of GABA has inhibited glucose stimulated insulin secretion from pancreatic islets. Muscimol, the GABAA agonist, inhibited the insulin secretion but, gave an enhanced secretion of insulin in presence of 4mM glucose at 10-7 , 10-5 and 1O-4M muscimol. But in presence of 20mM glucose muscimol significantly inhibited the insulin secretion. GABAB agonist, baclofen also inhibited glucose induced insulin secretion in presence of both 4mM and 20mM glucose. This shows the inhibitory role of GABA and its specific receptor subtypes over insulin synthesis from pancreatic bete-islets. In vitro DNA synthesis studies showed that activation of GABAA receptor by adding muscimol, a specific agonist, inhibited islet DNA synthesis. Also, the addition of baclofen, a specific agonist of GABAB receptor resulted in the stimulation of DNA synthesis.Thus the brain and pancreatic GABAA and GABAB receptor gene expression differentially regulates pancreatic insulin secretion and islet cell proliferation during pancreatic regeneration. This will have immense clinical significance in therapeutic applications in the management of Diabetes mellitus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, the effects of 5-HT, GABA and Bone Marrow Cells infused intranigrally to substantia nigra individually and in combinations on unilateral rotenone infused Parkinsonism induced rats. Scatchard analysis of DA, DA D1 and D2 receptors in the corpus striatum, cerebral cortex, cerebellum, brain stem and hippocampus showed a significant increase in the Brain regions of rotenone infused rat compared to control. Real Time PCR amplification of DA D1, D2, Bax and ubiquitin carboxy-terminal hydrolase were up regulated in the brain regions of rotenone infused rats compared to control. Gene expression studies of -Synuclien, cGMP and Cyclic AMP response element-binding protein showed a significant down regulation in Rotenone infused rats compared to control. Behavioural studies were carried out to confirm the biochemical and molecular studies.Our study demonstrated that BMC administration alone cannot reverse the above said molecular changes occurring in PD rat. 5-HT and GABA acting through their specific receptors in combination with bone marrow cells play a crucial role in the functional recovery of PD rats. 5-HT, GABA and Bone marrow cells treated PD rats showed significant reversal to control in DA receptor binding and gene expression. 5-HT and GABA have co-mitogenic property. Proliferation and differentiation of cells re-establishing the connections in Parkinson's disease facilitates the functional recovery. Thus, it is evident that 5-HT and GABA along with BMC to rotenone infused rats renders protection against oxidative, related motor and cognitive deficits which makes them clinically significant for cellbased therapy. The BMC transformed to neurons when co-transplanted with 5-HT and GABA which was confirmed with PKH2GL and nestin. These newly formed neurons have functional significance in the therapeutic recovery of Parkinson’s disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I) To study the changes in the content of brain rrrorroamirres in streptozotocirr-irrduced tliabetes as a lirnction of age and to lirrd the role oliadrenal lrornroncs in diabetic state. 2) To assess the adrenergic receptor function in the brain stem ofstreptozotocin-induced diabetic rats ofdillerent ages. 3) To study the changes in the basal levels of second messenger cAMP in the brain stenr ofstreptozotocin-induced diabetic rats as a function of age. 4) To study the changes occurring in the content ofmorroamines and their metabolites in whole pancreas and isolated pancreatic islets of streptozotocin-diabetic rats as a function ofage and the effect of adrenal hormones. 5) To study the adrenergic receptors and basal levels of cAMP in isolated pancreatic islets in young and old streptozotoein-diabetic rats. 6) The in virro study of CAMP content in pancreatic islets of young and old rats and its ellect on glucose induced insulin secretion. 7) 'lhe in vitro study on the involvement of dopamine and corticosteroids in glucose induced insulin secretion in pancreatic islets as a function of age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, the initial phase was directed to confirm the effects of curcumin and vitamin D3 in preventing or delaying diabetes onset by studying the blood glucose and insulin levels in the pre-treated and diabetic groups. Behavioural studies were conducted to evaluate the cognitive and motor function in experimental rats. The major focus of the study was to understand the cellular and neuronal mechanisms that ensure the prophylactic capability of curcumin and vitamin D3. To elucidate the mechanisms involved in conferring the antidiabetogenesis effect, we examined the DNA and protein profiles using radioactive incorporation studies for DNA synthesis, DNA methylation and protein synthesis. Furthermore the gene expression studies of Akt-1, Pax, Pdx-1, Neuro D1, insulin like growth factor-1 and NF-κB were done to monitor pancreatic beta cell proliferation and differentiation. The antioxidant and antiapoptotic actions of curcumin and vitamin D3 were examined by studying the expression of antioxidant enzymes - SOD and GPx, and apoptotic mediators like Bax, caspase 3, caspase 8 and TNF-α. In order to understand the signalling pathways involved in curcumin and vitamin D3 action, the second messengers, cAMP, cGMP and IP3 were studied along with the expression of vitamin D receptor in the pancreas. The neuronal regulation of pancreatic beta cell maintenance, proliferation and insulin release was studied by assessing the adrenergic and muscarinic receptor functional regulation in the pancreas, brain stem, hippocampus and hypothalamus. The receptor number and binding affinity of total muscarinic, muscarinic M1, muscarinic M3, total adrenergic, α adrenergic and β adrenergic receptor subtypes were studied in pancreas, brain stem and hippocampus of experimental rats. The mRNA expression of muscarinic and adrenergic receptor subtypes were determined using Real Time PCR. Immunohistochemistry studies using confocal microscope were carried out to confirm receptor density and gene expression results. Cell signalling alterations in the pancreas and brain regions associated with diabetogenesis and antidiabetogenesis were assessed by examining the gene expression profiles of vitamin D receptor, CREB, phospholipase C, insulin receptor and GLUT. This study will establish the anti-diabetogenesis activity of curcumin and vitamin D3 pre-treatment and will attempt to understand the cellular, molecular and neuronal control mechanism in the onset of diabetes.Administration of MLD-STZ to curcumin and vitamin D3 pre-treated rats induced only an incidental prediabetic condition. Curcumin and vitamin D3 pretreated groups injected with MLD-STZ exhibited improved circulating insulin levels and behavioural responses when compared to MLD-STZ induced diabetic group. Activation of beta cell compensatory response induces an increase in pancreatic insulin output and beta cell mass expansion in the pre-treated group. Cell signalling proteins that regulate pancreatic beta cell survival, insulin release, proliferation and differentiation showed a significant increase in curcumin and vitamin D3 pre-treated rats. Marked decline in α2 adrenergic receptor function in pancreas helps to relent sympathetic inhibition of insulin release. Neuronal stimulation of hyperglycemia induced beta cell compensatory response is mediated by escalated signalling through β adrenergic, muscarinic M1 and M3 receptors. Pre-treatment mediated functional regulation of adrenergic and cholinergic receptors, key cell signalling proteins and second messengers improves pancreatic glucose sensing, insulin gene expression, insulin secretion, cell survival and beta cell mass expansion in pancreas. Curcumin and vitamin D3 pre-treatment induced modulation of adrenergic and cholinergic signalling in brain stem, hippocampus and hypothalamus promotes insulin secretion, beta cell compensatory response, insulin sensitivity and energy balance to resist diabetogenesis. Pre-treatment improved second messenger levels and the gene expression of intracellular signalling molecules in brain stem, hippocampus and hypothalamus, to retain a functional neuronal response to hyperglycemia. Curcumin and vitamin D3 protect pancreas and brain regions from oxidative stress by their indigenous antioxidant properties and by their ability to stimulate cellular free radical defence system. The present study demonstrates the role of adrenergic and muscarinic receptor subtypes functional regulation in curcumin and vitamin D3 mediated anti-diabetogenesis. This will have immense clinical significance in developing effective strategies to delay or prevent the onset of diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a dynamic causal model that can explain context-dependent changes in neural responses, in the rat barrel cortex, to an electrical whisker stimulation at different frequencies. Neural responses were measured in terms of local field potentials. These were converted into current source density (CSD) data, and the time series of the CSD sink was extracted to provide a time series response train. The model structure consists of three layers (approximating the responses from the brain stem to the thalamus and then the barrel cortex), and the latter two layers contain nonlinearly coupled modules of linear second-order dynamic systems. The interaction of these modules forms a nonlinear regulatory system that determines the temporal structure of the neural response amplitude for the thalamic and cortical layers. The model is based on the measured population dynamics of neurons rather than the dynamics of a single neuron and was evaluated against CSD data from experiments with varying stimulation frequency (1–40 Hz), random pulse trains, and awake and anesthetized animals. The model parameters obtained by optimization for different physiological conditions (anesthetized or awake) were significantly different. Following Friston, Mechelli, Turner, and Price (2000), this work is part of a formal mathematical system currently being developed (Zheng et al., 2005) that links stimulation to the blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) signal through neural activity and hemodynamic variables. The importance of the model described here is that it can be used to invert the hemodynamic measurements of changes in blood flow to estimate the underlying neural activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AbstractBackground Depression in adolescence is debilitating with high recurrence in adulthood, yet its pathophysiological mechanism remains enigmatic. To examine the interaction between emotion, cognition and treatment, functional brain responses to sad and happy distractors in an affective go/no-go task were explored before and after Cognitive Behavioural Therapy (CBT) in depressed female adolescents, and healthy participants. Methods Eighty-two Depressed and 24 healthy female adolescents, aged 12 to 17 years, performed a functional magnetic resonance imaging (fMRI) affective go/no-go task at baseline. Participants were instructed to withhold their responses upon seeing happy or sad words. Among these participants, 13 patients had CBT over approximately 30 weeks. These participants and 20 matched controls then repeated the task. Results At baseline, increased activation in response to happy relative to neutral distractors was observed in the orbitofrontal cortex in depressed patients which was normalized after CBT. No significant group differences were found behaviourally or in brain activation in response to sad distractors. Improvements in symptoms (mean: 9.31, 95% CI: 5.35-13.27) were related at trend-level to activation changes in orbitofrontal cortex. Limitations In the follow-up section, a limited number of post-CBT patients were recruited. Conclusions To our knowledge, this is the first fMRI study addressing the effect of CBT in adolescent depression. Although a bias toward negative information is widely accepted as a hallmark of depression, aberrant brain hyperactivity to positive distractors was found and normalised after CBT. Research, assessment and treatment focused on positive stimuli could be a future consideration. Moreover, a pathophysiological mechanism distinct from adult depression may be suggested and awaits further exploration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Centrally injected histamine (HA) affects heart rate (HR), arterial blood pressure (BP), and sympathetic activity in rats. The posterodorsal medial amygdala (MePD) has high levels of histidine decarboxylase, connections with brain areas involved with the modulation of cardiovascular responses, and is relevant for the pathogenesis of hypertension. However, there is no report demonstrating the role of the MePD histaminergic activity on the cardiovascular function in awake rats. The alms of the present work were: 1) to study the effects of two doses (10-100 nM) of HA microinjected in the MePD on basal cardiovascular recordings and on baroreflex- and chemoreflex-mediated responses; 2) to reveal whether cardiovascular reflex responses could be affected by MePD microinjections of (R)-alpha-methylhistamine (AH(3)), an agonist of the inhibitory autoreceptor H(3); and, 3) to carry out a power spectral analysis to evaluate the contribution of the sympathetic and parasympathetic components in the variability of the HR and BP recordings. When compared with the control group (microinjected with saline, 0.3 mu l), HA (10 nM) promoted an increase in the MAP(50), i.e. the mean value of BP at half of the HR range evoked by the baroreflex response. Histamine (100 nM) did not affect the baroreflex activity, but significantly decreased the parasympathetic component of the HR variability, increased the sympathetic/parasympathetic balance at basal conditions (these two latter evaluated by the power spectral analysis), and promoted an impairment in the chemoreflex bradycardic response. Microinjection of AH(3) (10 mu M) led to mixed results, which resembled the effects of both doses of HA employed here. Present data suggest that cardiovascular changes induced by baroreceptors and chemoreceptors involve the histaminergic activity in the MePD. This neural regulation of reflex cardiovascular responses can have important implications for homeostatic and allostatic conditions and possibly for the behavioral displays modulated by the rat MePD. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the mechanisms responsible for increased blood pressure and sympathetic nerve activity (SNA) caused by 2-3 days dehydration (DH) both in vivo and in situ preparations. In euhydrated (EH) rats, systemic application of the AT(1) receptor antagonist Losartan and subsequent pre-collicular transection (to remove the hypothalamus) significantly reduced thoracic (t) SNA. In contrast, in DH rats, Losartan, followed by pre-collicular and pontine transections, failed to reduce tSNA, whereas transection at the medulla-spinal cord junction massively reduced tSNA. In DH but not EH rats, selective inhibition of the commissural nucleus tractus solitarii (cNTS) significantly reduced tSNA. Comparable data were obtained in both in situ and in vivo (anaesthetized/conscious) rats and suggest that following chronic dehydration, the control of tSNA transfers from supra-brainstem structures (e. g. hypothalamus) to the medulla oblongata, particularly the cNTS. As microarray analysis revealed up-regulation of AP1 transcription factor JunD in the dehydrated cNTS, we tested the hypothesis that AP1 transcription factor activity is responsible for dehydration-induced functional plasticity. When AP1 activity was blocked in the cNTS using a viral vector expressing a dominant negative FosB, cNTS inactivation was ineffective. However, tSNA was decreased after pre-collicular transection, a response similar to that seen in EHrats. Thus, the dehydration-induced switch in control of tSNA from hypothalamus to cNTS seems to be mediated via activation of AP1 transcription factors in the cNTS. If AP1 activity is blocked in the cNTS during dehydration, sympathetic activity control reverts back to forebrain regions. This unique reciprocating neural structure-switching plasticity between brain centres emphasizes the multiple mechanisms available for the adaptive response to dehydration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The locus coeruleus (LC) has been suggested as a CO2 chemoreceptor site in mammals. This nucleus is a mesencephalic structure of the amphibian brain and is probably homologous to the LC in mammals. There are no data available for the role of LC in the central chemoreception of amphibians. Thus the present study was designed to investigate whether LC of toads (Bufo schneideri) is a CO2/H+ chemoreceptor site. Fos immunoreactivity was used to verify whether the nucleus is activated by hypercarbia (5% CO2 in air). In addition, we assessed the role of noradrenergic LC neurons on respiratory and cardiovascular responses to hypercarbia by using 6-hydroxydopamine lesion. To further explore the role of LC in central chemosensitivity, we examined the effects of microinjection of solutions with different pH values (7.2, 7.4, 7.6, 7.8, and 8.0) into the nucleus. Our main findings were that 1) a marked increase in c-fos-positive cells in the LC was induced after 3 h of breathing a hypercarbic gas mixture; 2) chemical lesions in the LC attenuated the increase of the ventilatory response to hypercarbia but did not affect ventilation under resting conditions; and 3) microinjection with acid solutions (pH = 7.2, 7.4, and 7.6) into the LC elicited an increased ventilation, indicating that the LC of toads participates in the central chemoreception.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microinjection of S-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) in the nucleus of the solitary tract (NTS) of conscious rats causes hypertension, bradycardia, and vasoconstriction in the renal, mesenteric, and hindquarter vascular beds. In the hindquarter, the initial vasoconstriction is followed by vasodilation with AMPA doses >5 pmol/100 nl. To test the hypothesis that this vasodilation is caused by activation of a nitroxidergic pathway in the NTS, we examined the effect of pretreatment with the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME, 10 nmol/100 nl, microinjected into the NTS) on changes in mean arterial pressure, heart rate, and regional vascular conductance (VC) induced by microinjection of AMPA (10 pmol/100 nl in the NTS) in conscious rats. AMPA increased hindquarter VC by 18 ± 4%, but after pretreatment with L-NAME, AMPA reduced hindquarter VC by 16 ± 7% and 17 ± 9% (5 and 15 min after pretreatment, P < 0.05 compared with before pretreatment). Pretreatment with L-NAME reduced AMPA-induced bradycardia from 122 ± 40 to 92 ± 32 beats/min but did not alter the hypertension induced by AMPA (35 ± 5 mmHg before pretreatment, 43 ± 6 mmHg after pretreatment). Control injections with D-NAME did not affect resting values or the response to AMPA. The present study shows that stimulation of AMPA receptors in the NTS activates both vasodilatatory and vasoconstrictor mechanisms and that the vasodilatatory mechanism depends on production of nitric oxide in the NTS. Copyright © 2006 the American Physiological Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: Nowadays, research on orthopedic and dental implants is focused on titanium alloys for their mechanical properties and corrosion resistance in the human body environment. Another important aspect to be investigated is their surface topography, which is very important to osseointegration. With laser beam irradiation for roughening the implants surface an easier control of the microtopography is achieved, and surface contamination is avoided. The aim of this study was to assess human bone marrow stem cells response to a newly developed titanium alloy, Ti-15Mo, with surface topography modified by laser beam irradiation. Materials and methods: A total of 10 Ti machined disks (control), 10 Ti-15Mo machined disks and 10 Ti-15Mo disks treated by laser beam-irradiation were prepared. To study how Ti-15Mo surface topografy can induce osteoblast differentiation in mesenchymal stem cells, the expression levels of bone related genes and mesenchymal stem cells marker were analyzed, using real time Reverse Transcription-Polymerase Chain Reaction. Results: In Test 1 (comparison between Ti-15Mo machined disks and Ti-machined disks) quantitative real-time RT-PCR showed a significant induction of ALPL, FOSL1 and SPP1, which increase 20% or more. In Test 2 (comparison between Ti-15Mo laser treated disks and Ti-machined disks) all investigated genes were up-regulated. By comparing Test 1 and Test 2 it was detected that COL1A1, COL3A1, FOSL1 and ENG sensibly increased their expression whereas RUNX2, ALPL and SPP1 expression remained substantially unchanged. Conclusion: The present study demonstrated that laser treated Ti-15Mo alloys are promising materials for implants application.