921 resultados para ethanol production strain
Resumo:
Pós-graduação em Microbiologia Agropecuária - FCAV
Resumo:
One of the biggest challenges today is to develop clean fuels, which do not emit pollutant and with viable implementation. One of the options currently under study is the hydrogen production process. In this context, this work aims to study the technical and economical aspects of the incorporation process of hydrogen producing by ethanol steam reforming in the sugar cane industry and MCFC (molten carbonate fuel cell) application on it to generate electric power. Therefore, it has been proposed a modification in the traditional process of sugar cane industry, in order to incorporate hydrogen production, besides the traditional products (sugar, ethylic, hydrated and anhydric alcohol). For this purpose, a detailed theoretical study of the ethanol production process, describing the considerations to incorporate the hydrogen production will be performed. After that, there will be a thermodynamic study for analysing the innovation of this production chain, as well as a study of economic engineering to allocate the costs of products of the new process, optimising it and considering the thermoeconomics as being as an analysis tool. This proposal aims to improve Brazil's position in the ranking of international biofuels, corroborating the nation to be a power in the hydrogen era. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Microbiologia - IBILCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Aiming to get the best economic advantage in ethanol production from cassava roots, this study presented a physiochemical characterization from two different types of solid waste in two types of processing of the raw materials in manufacturing ethanol. The processing of cassava roots begins with the disintegration and washing the roots with the addition of 20% more water to obtain a pulp which was treated and stirred in the reactor while adding enzyme α-amylase at a temperature of 90°C for 2 hours. Then we performed a pH adjustment while lowering the temperature to 60 ° C with the addition of the enzyme amiloglucosidase and then stirring for 14 hours. The hydrolyzate obtained was the source of two types of waste which are: i) Solid residue obtained after filtration of the hydrolyatze and ii) Solid waste obtained from filtering wine after alcoholic fermentation of the hydrolyzate with the addition of a dried yeast strain Y-940 manufactured by MAURI OF BRAZIL SA (2%) at a temperature of 25º C. The results of the laboratory analysis showed that the byproducts derived from the hydrolysis and fermentation showed very similar chemical compositions. With levels between 39 and 41% fiber, 0.5% lipids, 20 and 30% carbohydrates, protein 0.5 and 1.50, 6 and 8% acidity, and 20 and 30% soluble solids.
Resumo:
The problem of proper disposal of solid waste generated in different industrial processes is one of worldwide environmental concerns nowadays. Thus, this study aimed to establish a new alternative for the disposal of two agro-industrial residues employing them to produce particleboard for different purposes in building construction. The focus was given to the reuse of the sugarcane bagasse (SB) originated during the processing of Saccharum officinarum for sugar and ethanol production, and bamboo stem leaves of Dendrocalamus giganteus(BB). For this, six particleboards were produced in the following compositions: with 100% SB, 75% SB + 25% BB, 50% SB+50% BB, 40% SB +60 BB, 25% SB+ 75% BB and 100% BB in the total mass of the composites. The particleboards physical characterization followed Brazilian Standard ABNT NBR 14810-3 to density, moisture content and water absorption. Results showed these raw materials are compatible to particleboard production.
Resumo:
The objective of this work was to evaluate the relationship between phenolic compounds and alcoholic fermentation efficiency. The yield of sugarcanebyproducts (glycerol, acidity, and biomass) was determined in a continuous process at SaoManoel Sugarcane Mill, (Sao Paulo, Brazil) during the 2011/2012 harvest period. The Saccharomyces cerevisiae strain used as inoculum was the CAT-1. During the harvest, the endogenous yeast outcompeted the selected strain, hence eliminating it from the process. This research consists of a case of study on the ethanol production facility. FolinCiocauteau and methylene blue method was used to assess phenolic compounds. The efficiencyof the byproducts generated during the fermentation processwas calculated. Statistics analyses were carried out using Pearson correlation and its significance, by thet-test. We concluded that the phenolic compounds within the must could not be correlated to the byproducts’fermentation efficiency calculated during a continuous fermentation process.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work was focused on the steam explosion pretreatment reproduction and alkaline delignification reactions on a pilot scale for the ethanol production, through different varieties of natural sugarcane bagasse, pretreated bagasse and delignified pretreated bagasse (cellulosic pulp). The possible chemical composition differences of the various types of bagasse, as well as the chemical composition variations of the materials in the 20 processes of pretreatment and delignification on the pilot scale were verified. The analytical results of the 20 samples of most diverse varieties and origins of natural sugarcane bagasse considering planting soils, planting periods and weather; show no significant chemical differences. It is evident that only with the chemical composition it is not possible to verify the differences between the varieties of sugarcane bagasses. The research results may offer some evidences of these varieties, but it is not a reliable parameter. The pilot process of steam explosion pretreatment and the alkaline delignification process of pretreated material showed through analytical results a good capacity of reproduction, as the standard differences were below 2.7. The average allowed in the pretreatment and alkaline delignification processes were 66.1 +/- 0.8 and 51.5 +/- 2.6 respectively, ensuring an excellent reproduction capacity of the processes obtained through chemical characterizations. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Liquid biofuels can be produced from a variety of feedstocks and processes. Ethanol and biodiesel production processes based on conventional raw materials are already commercial, but subject to further improvement and optimization. Biofuels production processes using lignocellulosic feedstocks are still in the demonstration phase and require further R&D to increase efficiency. A primary tool to analyze the efficiency of biofuels production processes from an integrated point of view is offered by exergy analysis. To gain further insight into the performance of biofuels production processes, a simulation tool, which allows analyzing the effect of process variables on the exergy efficiency of stages in which chemical or biochemical reactions take place, were implemented. Feedstocks selected for analysis were parts or products of tropical plants such as the fruit and flower stalk of banana tree, palm oil, and glucose syrups. Results of process simulation, taking into account actual process conditions, showed that the exergy efficiencies of the acid hydrolysis of banana fruit and banana pulp were in the same order (between 50% and 60%), lower than the figure for palm oil transesterification (90%), and higher that the exergy efficiency of the enzymatic hydrolysis of flower stalk (20.3%). (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The present work is inserted into the broad context of the upgrading of lignocellulosic fibers. Sisal was chosen in the present study because more than 50% of the world's sisal is cultivated in Brazil, it has a short life cycle and its fiber has a high cellulose content. Specifically, in the present study, the subject addressed was the hydrolysis of the sisal pulp, using sulfuric acid as the catalyst. To assess the influence of parameters such as the concentration of the sulfuric acid and the temperature during this process, the pulp was hydrolyzed with various concentrations of sulfuric acid (30-50%) at 70 A degrees C and with 30% acid (v/v) at various temperatures (60-100 A degrees C). During hydrolysis, aliquots were withdrawn from the reaction media, and the solid (non-hydrolyzed pulp) was separated from the liquid (liquor) by filtering each aliquot. The sugar composition of the liquor was analyzed by HPLC, and the non-hydrolyzed pulps were characterized by viscometry (average molar mass), and X-ray diffraction (crystallinity). The results support the following conclusions: acid hydrolysis using 30% H2SO4 at 100 A degrees C can produce sisal microcrystalline cellulose and the conditions that led to the largest glucose yield and lowest decomposition rate were 50% H2SO4 at 70 A degrees C. In summary, the study of sisal pulp hydrolysis using concentrated acid showed that certain conditions are suitable for high recovery of xylose and good yield of glucose. Moreover, the unreacted cellulose can be targeted for different applications in bio-based materials. A kinetic study based on the glucose yield was performed for all reaction conditions using the kinetic model proposed by Saeman. The results showed that the model adjusted to all 30-35% H2SO4 reactions but not to greater concentrations of sulfuric acid. The present study is part of an ongoing research program, and the results reported here will be used as a comparison against the results obtained when using treated sisal pulp as the starting material.
Resumo:
The xylose conversion to ethanol by Pichia stipitis was studied. In a first step, the necessity of supplementing the fermentation medium with urea. MgSO(4) x 7H(2)O, and/or yeast extract was evaluated through a 2(3) full factorial design. The simultaneous addition of these three nutritional sources to the fermentation medium, in concentrations of 2.3, 1.0, and 3.0 g/l, respectively, showed to be important to improve the ethanol production in detriment of the substrate conversion to cell. In a second stage, fermentation assays performed in a bioreactor under different K(L)a (volumetric oxygen transfer coefficient) conditions made possible understanding the influence of the oxygen transfer on yeast performance, as well as to define the most suitable range of values for an efficient ethanol production. The most promising region to perform this bioconversion process was found to be between 2.3 and 4.9 h(-1), since it promoted the highest ethanol production results with practically exhaustion of the xylose from the medium. These findings contribute for the development of an economical and efficient technology for large scale production of second generation ethanol. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Ten yeast strains were evaluated concerning their capabilities to assimilate biodiesel-derived glycerol in batch cultivation. The influence of glycerol concentration, temperature, pH and yeast extract concentration on biomass production was studied for the yeast selected. Further, the effect of agitation on glycerol utilization by the yeast Hansenula anomala was also studied. The yeast H. anomala CCT 2648 showed the highest biomass yield (0.30 g g(-1)) and productivity (0.19 g L-1 h(-1)). Citric acid, succinic acid, acetic acid and ethanol were found as the main metabolites produced. The increase of yeast extract concentration from 1 to 3 g L-1 resulted in high biomass production. The highest biomass concentration (21 g L-1), yield (0.45 g g(-1)) and productivity (0.31 g L-1 h(-1)), as well as ribonucleotide production (13.13 mg g(-1)), were observed at 700 rpm and 0.5 vvm. These results demonstrated that glycerol from biodiesel production process showed to be a feasible substrate for producing biomass and ribonucleotides by yeast species.
Resumo:
Abstract Background Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high (e.g. 20 g/L) initial sugar concentrations. In this study, a S. cerevisiae strain lacking invertase activity was engineered to transport sucrose into the cells through a low-affinity and low-capacity sucrose-H+ symport activity, and the growth kinetics and biomass yields on sucrose analyzed using simple batch cultures. Results We have deleted from the genome of a S. cerevisiae strain lacking invertase the high-affinity sucrose-H+ symporter encoded by the AGT1 gene. This strain could still grow efficiently on sucrose due to a low-affinity and low-capacity sucrose-H+ symport activity mediated by the MALx1 maltose permeases, and its further intracellular hydrolysis by cytoplasmic maltases. Although sucrose consumption by this engineered yeast strain was slower than with the parental yeast strain, the cells grew efficiently on sucrose due to an increased respiration of the carbon source. Consequently, this engineered yeast strain produced less ethanol and 1.5 to 2 times more biomass when cultivated in simple batch mode using 20 g/L sucrose as the carbon source. Conclusion Higher cell densities during batch cultures on 20 g/L sucrose were achieved by using a S. cerevisiae strain engineered in the sucrose uptake system. Such result was accomplished by effectively reducing sucrose uptake by the yeast cells, avoiding overflow metabolism, with the concomitant reduction in ethanol production. The use of this modified yeast strain in simpler batch culture mode can be a viable option to more complicated traditional sucrose-limited fed-batch cultures for biomass-directed processes of S. cerevisiae.