942 resultados para erbium doping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure ZnO and co-doped (Mn, Ag) ZnO nanoparticles have been successfully prepared by chemical co-precipitation method without using a capping agent. X-ray diffraction (XRD) studies confirms the presence of wurtzite (hexagonal) crystal structure similar to undoped ZnO, suggesting that doped Mn, Ag ions are substituted to the regular Zn sites. The morphology of the samples were studied by scanning electron microscopy (SEM). The chemical composition of pure and co-doped ZnO nanoparticles were characterized by energy dispersive X-ray analysis spectroscopy (EDAX). Optical absorption properties were determined by UV-vis Diffuse Reflectance Spectrophotometer. The incorporation of Ag+, Mn2+ in the place of Zn2+ provoked to decrease the size of nanocrystals as compared to pure ZnO. Optical absorption measurements indicates blue shift in the absorption band edge upon Ag, Mn ions doped ZnO nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dilute magnetic semiconducting Zn1-xCrxS (x = 0.00, 0.01, 0.03, 0.05, 0.07) nanoparticles were synthesized by the co-precipitation technique using thioglycerol as the capping agent. Powder X-ray diffraction studies showed that Zn1-xCrxS nanoparticles exhibit zinc blende structure with no secondary phase, indicating that Cr ions are substituted at the Zn sites. Photoluminescence and Raman studies show the incorporation of Cr in ZnS nanoparticles. X-ray absorption studies depict that the valence of Zn remains unchanged and maintained in the divalent state, upon doping with Cr. The M-H curves at room temperature indicate the presence of weak ferromagnetism at room temperature due to structural defects. The increase in ferromagnetism with increasing Cr content up to 3%, demonstrates the possibility of tailoring the weak ferromagnetism in ZnS by appropriate Cr doping. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the effect of Fe doping on structural, magnetic, and dielectric properties of hexagonal ErMnO3 system. For 50% doping of Fe on Mn site in ErMnO3 modulated its crystallographic structure from hexagonal to orthorhombic phase. Accompanied with the structural phase transition in ErMnO3, the magnetic properties are effectively modified. The Fe doped samples exhibit enhancement in antiferromagnetic ordering Neel temperature (T-N) from 77K (ErMnO3) to 280K (ErFe0.5Mn0.5O3). The anomalies observed in the dielectric constant around T-N in doped ErMnO3 samples indicate the coupling between electric and magnetic order parameters. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shallow-trench isolation drain extended pMOS (STI-DePMOS) devices show a distinct two-stage breakdown. The impact of p-well and deep-n-well doping profile on breakdown characteristics is investigated based on TCAD simulations. Design guidelines for p-well and deep-n-well doping profile are developed to shift the onset of the first-stage breakdown to a higher drain voltage and to avoid vertical punch-through leading to early breakdown. An optimal ratio between the OFF-state breakdown voltage and the ON-state resistance could be obtained. Furthermore, the impact of p-well/deep-n-well doping profile on the figure of merits of analog and digital performance is studied. This paper aids in the design of STI drain extended MOSFET devices for widest safe operating area and optimal mixed-signal performance in advanced system-on-chip input-output process technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Topological crystalline insulators (TCIs) are a new quantum state of matter in which linearly dispersed metallic surface states are protected by crystal mirror symmetry. Owing to its vanishingly small bulk band gap, a TCI like Pb0.6Sn0.4Te has poor thermoelectric properties. Breaking of crystal symmetry can widen the band gap of TCI. While breaking of mirror symmetry in a TCI has been mostly explored by various physical perturbation techniques, chemical doping, which may also alter the electronic structure of TCI by perturbing the local mirror symmetry, has not yet been explored. Herein, we demonstrate that Na doping in Pb0.6Sn0.4Te locally breaks the crystal symmetry and opens up a bulk electronic band gap, which is confirmed by direct electronic absorption spectroscopy and electronic structure calculations. Na doping in Pb0.6Sn0.4Te increases p-type carrier concentration and suppresses the bipolar conduction (by widening the band gap), which collectively gives rise to a promising zT of 1 at 856 K for Pb0.58Sn0.40Na0.02Te. Breaking of crystal symmetry by chemical doping widens the bulk band gap in TCI, which uncovers a route to improve TCI for thermoelectric applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the La3+ and Gd3+ co-doping on the structure, electric and magnetic properties of BiFeO3 (BFO) ceramics are investigated. For the compositions (x=0 and 0 <= y <= 0.15) in the perovskite structured LaxGdyBi1-xFeO3 system, a tiny residual phase of Bi2Fe4O9 is noticed. Such a secondary phase is suppressed with the incorporation of `La' content (x). The magnitude of dielectric constant (epsilon(r) increases progressively by increasing the `La' content from x=0 to 0.15 with a remarkable decrease of dielectric loss. For x=0.15, the system LaxGdyBi1-x(x+y)FeO3 exhibits highest remanent magnetization (M-r) of 0.18 emu/g and coercive magnetic field (H-c) of similar to 1 Tin the presence of external magnetic field of 9 T at 300 K. The origin of enhanced dielectric and magnetic properties of LaxGdyBil (x+y)Fe03 and the role of doping elements, La3+, Gd3+ has been discussed. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have carried out dielectric and transport measurements in NdFe1-xMnxO3 (0 <= x <= 1) series of compounds and studied the variation of activation energy due to a change in Mn concentration. Despite similar ionic radii in Mn3+ and Fe3+, large variation is observed in the lattice parameters and a crossover from dynamic to static Jahn-Teller distortion is discernible. The Fe/Mn-O-Fe/Mn bond angle on the ab plane shows an anomalous change with doping. With an increase in the Mn content, the bond angle decreases until x = 0.6; beyond this, it starts rising until x = 0.8 and again falls after that. A similar trend is observed in activation energies estimated from both transport and dielectric relaxation by assuming a small polaron hopping (SPH) model. Impedance spectroscopy measurements delineate grain and grain boundary contributions separately both of which follow the SPH model. Frequency variation of the dielectric constant is in agreement with the modified Debye law from which relaxation dispersion is estimated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a recently proposed Ginzburg-Landau-like lattice free energy functional due to Banerjee et al. (2011) we calculate the fluctuation diamagnetism of high -T-c superconductors as a function of doping, magnetic field and temperature. We analyse the pairing fluctuations above the superconducting transition temperature in the cuprates, ranging from the strong phase fluctuation dominated underdoped limit to the more conventional amplitude fluctuation dominated overdoped regime. We show that a model where the pairing scale increases and the superfluid density decreases with underdoping produces features of the observed magnetization in the pseudogap region, in good qualitative and reasonable quantitative agreement with the experimental data. In particular, we explicitly show that even when the pseudogap has a pairing origin the magnetization actually tracks the superconducting dome instead of the pseudogap temperature, as seen in experiment. We discuss the doping dependence of the `onset' temperature for fluctuation diamagnetism and comment on the role of vortex core -energy jn our model. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doping in hydrogenated amorphous silicon occurs by a process of an ionised donor atom partially compensated by a charged dangling bond. The total energies of various dopant and dopant/bonding combinations are calculated for tetrahedral amorphous carbon. It is found that charged dangling bonds are less favoured because of the stronger Coulombic repulsion in ta-C. Instead the dopants can be compensated by weak bond states in the lower gap associated with odd-membered π-rings or odd-numbered π-chains. The effect is that the doping efficiency is low but there are not charged midgap recombination centres, to reduce photoconductivity or photoluminescence with doping, as occurs in a-Si:H.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doping in hydrogenated amorphous silicon occurs by a process of an ionized donor atom partially compensated by a charged dangling bond. The total energies of various dopant and dopant/bonding combinations are calculated for tetrahedral amorphous carbon. It is found that charged dangling bonds are less favored because of the stronger Coulombic repulsion in ta-C. Instead the dopants can be compensated by weak bond states in the lower gap associated with odd-membered π-rings or odd-numbered π-chains. The effect is that the doping efficiency is low but there are not charged midgap recombination centres, to reduce photoconductivity or photoluminescence with doping, as occurs in a-Si:H.