885 resultados para engineering geology
Resumo:
Karst collapse is one of the most important engineering geology hazards in Karst district, which seriously endangers the living of humankind and the environment around us, as well as the natural resources. Generally speaking, there exist three processes of overburden karst collapse:the formation of soil cavity, the expansion of soil cavity and the fall of the cavity roof. During these processes, groundwater is always the most active factor and plays a key role. Pumping will bring into the great change of groundwater in flow state, flowrate, frequency of fluctuation as well as hydraulic gradient and will speed the fall. Statistics shows that most of the man-made karst collapse are induced by pumping, so studying the mechanism of Karst collapse induced by pumping will provide theoretical base for the prediction and precaution of collapse. By theoretically studying the initial condition for the forming and expanding of a soil cavity, Spalling step by step the essential mechanism of Karst collapse induced by pumping is put forward. The catastrophe model for the collapse induced by pumping is set up to predict the fall probability of a cavity roof, and the criterion for the collapse is determined. Simultaneously, Karst collapse induced by pumping is predicted with manmade neural network theory. Finally, the appropriate precaution measurements for the collapse induced by pumping are provided. The creative opinions of the paper is following: The initial condition of forming a soil cavity is put forwarded as formula (4-1-5), (4-1-24),(4-1-25) and (4-1-27); which provide theoretical base for foreclosing the formation of a soil cavity and defending collapse. Spaliing step by step as the essential mechanism of Karst collapse induced by pumping is put forward. The spaliing force is defined as formula (4-2-15). The condition for the expanding of a soil cavity is that spaliing force is greater than tensile strength of soil. The stability of a soil cavity is first studied with catastrophe theory. It is concluded that the process of development up to ground collapse of a small cavity is continuous, however, the process of a big cavity is catastrophic. It is feasibility that the Karst collapse be predicted with manmade neural network theory as a new way.
Resumo:
In the engineering reinforcement of-rock and soil mass, engineers must consider how to obtain better reinforcing effect at the cost of less reinforcing expense, which, in fact, is the aim of reinforcement design. In order to accomplish the purpose, they require not only researching the material used to reinforce and its structure, but also taking into account of several important geological factors, such as the structure and property of rock and soil mass. How to improve the reinforcing effect according to engineering geomechanical principle at the respect of the reinforcement of engineering soil and rock mass is studied and discussed in this paper. The author studies the theory, technology and practice of geotechnical reinforcement based on engineering geomechanics, taking example for the soil treatment of Zhengzhou Airport, the effect analysis of reinforcement to the slope on the left bank of Wuqiangxi Hydropower Station and the reinforcing design of the No. 102 Landslide and unique sand-slide slope on the Sichuan-Tibet Highway. The paper is comprised of two parts for the convenience of discussion. In the first part, from the first chapter to the fifth chapter, trying to perform the relevant research and application at the viewpoint of soil mass engineering geomechanics, the author mainly discusses the study of reinforcing soft ground soil through dynamical consolidation and its application. Then, in the second part, from the sixth chapter to the eleventh chapter, the study of new technologies in the rock slope reinforcement and their application are discussed. The author finds that not only better reinforcing effect can be gained in the research where the principle and method of rock mass engineering geomechanics is adopted, but also new reinforcing technologies can be put forward. Zhengzhou Airport is an important one in central plains. It lies on Yellow River alluvial deposit and the structure of stratum is complex and heterogeneous. The area of airport is very large, which can result in differential settlement easily, damage of airport and aircraft accident, whereas, there are no similar experiences to dispose the foundation, so the foundation treatment become a principal problem. During the process of treatment, the method of dynamic compaction was adopted after compared with other methods using the theory of synthetic integration. Dynamic compaction is an important method to consolidate foundation, which was successfully used in the foundation of Zhengzhou Airport. For fill foundation, controlling the thickness of fill so as to make the foundation treatment can reach the design demand and optimum thickness of the fill is a difficult problem. Considering this problem, the author proposed a calculation method to evaluate the thickness of fill. The method can consider not only the self-settlement of fill but also the settlement of the ground surface under applied load so as to ensure the settlement occurred during the using period can satisfy the design demand. It is proved that the method is correct after using it to choose reasonable energy of dynamic compaction to treat foundation. At the same time, in order to examine the effect of dynamic compaction, many monitor methods were adopted in the test such as static loading test, modulus of resilience test, deep pore pressure -test, static cone penetration test and the variation of the pore volume measurement. Through the tests, the author summarized the discipline of the accumulation and dissipation of pore pressure in Yellow River alluvial deposit under the action of dynamic compaction, gave a correct division of the property change of silt and clay under dynamic compaction, determined the bearing capacity of foundation after treatment and weighted the reinforcing effect of dynamic consolidation from the variation of the soil particle in microcosmic and the parameter of soil mass' density. It can be considered that the compactness of soil is in proportion to the energy of dynamic compaction. This conclusion provided a reference to the research of the "Problem of Soil Structure-the Central Problem of Soil Mechanics in 21 Century ". It is also important to strengthen rock mass for water conservancy and electric power engineering. Slip-resistance pile and anchoring adit full of reinforced concrete are usually adopted in engineering experience to strengthen rock mass and very important for engineering. But there also some deficiency such as the weakest section can't be highlighted, the monitor is inconvenient and the diameter of pile and adit is very large etc. The author and his supervisor professor Yangzhifa invented prestressed slip-resistance pile and prestressed anchoring adit full of reinforced concrete, utilizing the advantage that the prestressed structure has better anti-tensile characteristic (this invention is to be published). These inventions overcome the disadvantages of general slip-resistance pile and anchoring adit full of reinforced concrete and have the functions of engineering prospecting, strengthening, drainage and monitor simultaneous, so they have better strengthened effect and be more convenient for monitor and more economical than traditional methods. Drainage is an important factor in treatments of rock mass and slop. In view of the traditional drainage method that drainage pore often be clogged so as to resulted in incident, professor Yangzhifa invented the method and setting of guide penetration by fiber bundle. It would take good effect to use it in prestressed slip-resistance pile and anchoring adit full of reinforced concrete. In this paper, the author took example for anchoring adit full of reinforced concrete used to strengthen Wuqiangxi left bank to simulate the strengthened effect after consolidated by prestressed slip-resistance pile, took example for 102 landslide occurred along Sichuan-Tibet highway to simulate the application of slip-resistance pile and the new technology of drainage. At the same time the author proposed the treatment method of flowing sand in Sichuan-Tibet highway, which will benefit the study on strengthening similar engineering. There are five novelties in the paper with the author's theoretical study and engineering practice: 1. Summarizing the role of pore water pressure accumulation and dissipation of the Yellow River alluvial and diluvial soil under the action of dynamical consolidation, which has instructive significance in the engineering construction under the analogical engineering geological conditions in the future. It has not been researched by the predecessors. 2. Putting forward the concept of density D in microcosmic based on the microcosmical structure study of the soil sample. Adopting D to weight the reinforcing effect of dynamic consolidation is considered to be appropriate by the means of comparing the D values of Zhengzhou Airport's ground soil before with after dynamically consolidating reinforcement, so a more convenient balancing method can be provided for engineering practice. 3. According to the deep research into the soil mass engineering geology, engineering rock and soil science, soil mechanics, as well as considerable field experiments, improving the consolidating method in airport construction, from the conventional method, which is dynamically compactmg original ground surface firstly, then filling soil and dynamically layer-consolidating or layer-compacting at last to the upgraded method, which is performing dynamical consolidation after filling soil to place totally at the extent of the certain earth-filling depth. The result of the dynamical consolidation not only complies with the specifications, but also reduces the soil treatment investment by 10 million RMB. 4. Proposing the method for calculating the height of the filled soil by the means of estimating the potential displacement produced in the original ground surface and the filled earth soil under the possible load, selecting the appropriate dynamically-compacting power and determining the virtual height of the filled earth soil. The method is proved to be effective and scientific. 5. According to the thought of Engineering Geomechanics Metal-Synthetic Methodology (EGMS), patenting two inventions (to the stage of roclamation, with Professor Yang Zhi-fa, the cooperative tutor, and etc.) in which multi-functions, engineering geological investigation, reinforcement, drainage and strength remedy, are integrated all over in one body at the viewpoint of the breakage mechanism of the rock slope.
Resumo:
Study of 3D visualization technology of engineering geology and its application to engineering is a cross subject which includes geosciences, computer, software and information technology. Being an important part of the secondary theme of National Basic Research Program of China (973 Program) whose name is Study of Multi-Scale Structure and Occurrence Environment of Complicated Geological Engineering Mass(No.2002CB412701), the dissertation involves the studies of key problems of 3D geological modeling, integrated applications of multi-format geological data, effective modeling methods of complex approximately layered geological mass as well as applications of 3D virtual reality information management technology.The main research findings are listed below:Integrated application method of multi-format geological data is proposed,which has solved the integrated application of drill holes, engineering geology plandrawings, sectional drawings and cutting drawings as well as exploratory trenchsketch. Its application can provide as more as possible fundamental data for 3Dgeological modeling.A 3D surface construction method combined Laplace interpolation points withoriginal points is proposed, so the deformation of 3D model and the crossing error ofupper and lower surface of model resulted from lack of data when constructing alaminated stratum can be eliminated.3D modeling method of approximately layered geological mass is proposed,which has solved the problems of general modeling method based on the sections or points and faces when constructing terrain and concordant strata.The 3D geological model of VII dam site of Xiangjiaba hydropower stationhas been constructed. The applications of 3D geological model to the auto-plotting ofsectional drawing and the converting of numerical analysis model are also discussed.3D virtual reality information integrated platform is developed, whose mostimportant character is that it is a software platform having the functions of 3D virtualreality flying and multi-format data management simultaneously. Therefore, theplatform can load different 3D model so as to satisfy the different engineeringdemands.The relics of Aigong Cave of Longyou Stone Caves are recovered. Thereinforcement plans of 1# and 2# cave in phoenix hill also be expressed. The intuitiveexpression provided decision makers and designers a very good environment.The basic framework and specific functions of 3D geological informationsystem are proposed.The main research findings in the dissertation have been successfully applied to some important engineering such as Xiangjiaba hydropower station, a military airport and Longyou Stone Caves etc.
Resumo:
In order to realize fast development of the national economy in a healthy way and coordinate progress with whole society, the country has implemented the strategy of development of the western region. An important action of finishing this strategic task is to accelerate the highway construction in the western region, join the western region and places along the coast, the river, the border with goods and materials, technology, and personnel interchanges, and then drive development of the local economy.The western region was influenced by the Himalaya Tectonization in Cenozoic, and the crust rose and became the plateau. In the course of rising, rivers cut down sharply to form a lot of high mountains and gorges.Because of topography and geomorphology, bridges in the traffic construction in the alpine gorge area are needed. Rivers have characteristics of large flow, fast velocity and high and steep river valley, so building a pier in the river is not only very difficult, but also making the cost increase. At the same time, the impact that the pier is corroded and the bridge base that is drawn to be empty by flow are apt to cause destruction of the pier. For those reasons, suspending bridge and cable-stay bridge are usually adopted with the single and large span. For the large span bridge, the pier foundation could receive ten thousand and more vertical strength, bending moment and near kiloton horizontal thrust.Because bank slope in the alpine gorge district is cut deeply and unsettled big, natural stability is worse under endogenic and exogenic force. When bank slope bears heavy vertical strength, bending moment and horizontal thrust facing the river, it will inevitably make the balance state of rock and soil mass change, bridge bank slope deform, and even destroyed. So the key problem at the time of the large span's bridge construction in the alpine gorge area is how to make it stable.So based on the spot investigation, the Engineering Geology Analysis Method is very important to grasp the bank slope stability. It can provide the bank slope stability macroscopic ally and qualitatively, and reference to the indoor calculation. The Engineering Geology Analysis Method is that by way of analyzing and investigating terms of bank slope instability, stability development trend, the ancient rock slide and devolution in the site, stability comprehensive evaluation primarily, current and future stability of bank slope is gotten, realizing the intention to serving the concrete engineering.After the Engineering Geology Analysis Method is applied to project instances of BeiPan River Bridge and BaLin River Bridge, results are accord with bank slope actual conditions, which proves sites are suited to building bridges from site stability.we often meet bank slope stability issues in the traffic construction in the alpine gorge areao Before the evaluation of the bank slope stability, the engineering geological condition is investigated first. After that, the next exploration target and geology measures are decided. So, the Engineering Geology Analysis Method that the investigation of the engineering geological condition is the main content is quite important in practice. The other evaluations of the bank slope stability are based on it. Because foundation receives very heavy load, for the big span's bridge in the alpine gorge area, a long pile of the large diameter (D^0.8m) is usually selected. In order to reflect rock mass's deformation properties under rock-socketed pile function, the author has used the FLAG30 software for rock and soil mass and done many numerical simulations. By them, the author launches the further investigation on deformation properties of bank slope under different slope angle, pile length, diameter, elastic modulus, load, bank slope's structure, etc. Some conclusion meaningful to the design and produce are obtained.
Efects of mineral suspension and dissolution on strength and compressibility of soft carbonate rocks
Resumo:
© 2014 Elsevier B.V.Calcarenites are highly porous soft rocks formed of mainly carbonate grains bonded together by calcite bridges. The above characteristics make them prone to water-induced weathering, frequently featuring large caverns and inland natural underground cavities. This study is aimed to determine the main physical processes at the base of the short- and long-term weakening experienced by these rocks when interacting with water. We present the results of microscale experimental investigations performed on calcarenites from four different sites in Southern Italy. SEM, thin sections, X-ray CT observations and related analyses are used for both the interpretation-definition of the structure changes, and the identification-quantification of the degradation mechanisms. Two distinct types of bonding have been identified within the rock: temporary bonding (TB) and persistent bonding (PB). The diverse mechanisms linked to these two types of bonding explain both the observed fast decrease in rock strength when water fills the pores (short-term effect of water), identified with a short-term debonding (STD), and a long-term weakening of the material, when the latter is persistently kept in water-saturated conditions (long-term effect of water), identified with a long-term debonding (LTD). To highlight the micro-hydro-chemo-mechanical processes of formation and annihilation of the TB bonds and their role in the evolution of the mechanical strength of the material, mechanical tests on samples prepared by drying partially saturated calcarenite powder, or a mix of glass ballotini and calcarenite powder were conducted. The long-term debonding processes have also been investigated, using acid solutions in order to accelerate the reaction rates. This paper attempts to identify and quantify differences between the two types of bonds and the relative micro-scale debonding processes leading to the macro-scale material weakening mechanisms.
Resumo:
The use of recycled aggregates has increased greatly over the last decade owing to enhanced environmental sensitivities. The level of performance required by such materials is dependent upon the applications for which they are used. Many recycled construction wastes have adequate shear strength in relation to various geotechnical applications. However, a possible drawback of these materials is the risk of crushing during repeated loading. The work reported in this paper examined two waste materials: crushed concrete and building debris, both regarded as construction wastes. Tests were also performed on traditionally used crushed rock, in this case basalt. The materials were subjected to repeated loading in a large direct shear apparatus. The amount of crushing was quantified by performing particle size analysis of the tested material. The results have shown that both recycled construction wastes were susceptible to particle crushing. The amount of crushing was influenced by both the vertical pressure and the number of loading cycles. This leads to a marked decrease in peak friction angle
Resumo:
Quantitative application of elastoplastic theory to the yielding behaviour of natural soils has always been uncertain. Part of the reason is that the theory was developed for reconstituted materials with isotropic structure, in contrast to natural soils that are usually anisotropic. The approach considered in this study assumes that pre-yielding behaviour is governed by the theory of linear anisotropic elasticity and that yield loci in the mean effective stress ( p') – deviator stress (q) plane are aligned approximately along the coefficient of earth pressure (K0) line. The assumption of a rotated yield locus associated with anisotropic elastic behaviour within the state boundary surface indicates that the elastic wall within the state boundary surface is inclined. The form of the state boundary surface has been determined mathematically in terms of anisotropic elastic and Cam-Clay soil parameters. Stress path tests were conducted on samples of Belfast Upper Boulder Clay removed from a depth of 28 m below ground surface. Good agreement was found between predicted and measured yield loci. The study also examined the influence of subsequent isotropic compression on the yielding characteristics of the natural clay. The indications are that the anisotropy developed during deposition disappears when the sample is loaded to a stress level at least twice the stress generated during the original deposition process. The methods developed in the paper have also been applied to test results reported previously on Winnipeg clay, and good agreement was obtained.
Resumo:
Recent research on the delayed failure of cuttings in clay clearly recognises and predicts progressive delayed failure of deep cuttings. This is due to a combination of strain-softening, weathering, dissipation of negative excess pore water pressure generated at the time of excavation, and frequent occurrence of prolonged periods of wet weather. There have been several slope failures of this kind in Northern Ireland. This paper discusses a case study based on a failure of a deep cutting, excavated at a slope of 1 in 2, on the A1 near Dromore (County Down) in Northern Ireland. The cutting was in lodgement till, a stiff, heavily overconsolidated clay. The failure occurred approximately 30 years after the cutting was excavated, following a prolonged period of heavy rainfall. An analysis of the failure, together with laboratory test data on soil samples taken from the site, confirmed that by using long-term soil strength parameters the factor of safety of this slope was unity. The conclusion of the analysis is that slopes excavated in this soil should be designed (and assessed) on long-term strength parameters.
Resumo:
A large hydrochemical data-set for the East Yorkshire Chalk has been assessed. Controls on the distribution of water qualities within this aquifer reflect: water-rock interactions (affecting especially the carbonate system and associated geochemistry); effects of land-use change (especially where the aquifer is unconfined); saline intrusion and aquifer refreshening (including ion exchange effects); and aquifer overexploitation (in the semi-confined and confined zones of the aquifer). Both Sr and I prove useful indicators of groundwater ages, with I/Cl ratios characterising two sources of saline waters. The hydrochemical evidence clearly reveals the importance of both recent management decisions and palaeohydrogeology in determining the evolution and distribution of groundwater salinity within the artesian and confined zones of the aquifer. Waters currently encountered in the aquifer are identified as complex (and potentially dynamic) mixtures between modern recharge waters, modern seawater, and old seawaters which entered the aquifer many millennia ago.