997 resultados para energetic photoelectrons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solar energetic particles (SEPs) occasionally contribute additional atmospheric ionization beyond that arising from the usual galactic cosmic ray background. During an SEP event associated with a solar flare on April 11, 2013, the vertical ionization rate profile obtained using a balloon-borne detector showed enhanced ionization with a 26% increase at 20 km, over Reading, United Kingdom. Fluctuations in atmospheric electrical parameters were also detected at the surface, beneath the balloon’s trajectory. As no coincident changes in geomagnetism occurred, the electrical fluctuations are very likely to be associated with increased ionization, as observed by the balloon measurements. The lack of response of surface neutron monitors during this event indicates that energetic particles that are not detected at the surface by neutron monitors can nevertheless enter and influence the atmosphere’s weather-generating regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particles with energies of tens to hundreds of keV provide a powerful diagnostic of the acceleration processes that characterise the Earth’s magnetosphere, in particular the highly dynamic nightside plasma sheet. Such energetic particles can be detected by the RAPID experiment, onboard the quartet of Cluster spacecraft. We present results from the study of a series of quasi-periodic, intense energetic electron signatures in the magnetotail revealed by RAPID Imaging Electron Spectrometer (IES) observations some 19 Earth radii (RE) downtail, associated with the passage of a highly geoeffective, high-speed solar wind stream. The RAPID-IES signatures – interpreted in combination with magnetic field and lower-energy electron measurements from the FGM and PEACE experiments on Cluster, respectively, and with reference to energetic electron observations from the CEPPAD-IES instrument on Polar – are understood in terms of repeated encounters of the Cluster spacecraft with the tail plasma sheet in response to the resultant tail reconfiguration in each of a series of substorms. We consider the Cluster response for two of these substorms (identified according to the conventional expansion phase onset indicators of particle injection at geosynchronous orbit and Pi2 pulsations at Earth) in terms of two possible tail configurations in which a Near-Earth Neutral Line forms either antisunward or sunward of the Cluster spacecraft. The latter scenario, in which the reconnection X-line is assumed to form sunward of Cluster and subsequently migrate downtail such that the spacecraft become engulfed in a tailward expanding plasma sheet, is shown to be more consistent with the observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proposed HI-LITE Explorer will investigate the global ion outflow from the high-latitude ionosphere, its relationship to auroral features, and the consequences of this outflow on magnetospheric processes. The unique nature of the HI-LITE Explorer images will allow temporal and spatial features of the global ion outflow to be determined. The mission's scientific motivation comes from the fundamental role high-latitude ionospheric ions play in the dynamics of the solar wind driven magnetospheric-ionospheric system. These outflows are a major source of plasma for the magnetosphere and it is believed they play an important role in the triggering of substorms. In addition this paper describes the HI-LITE spacecraft and instruments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This manuscript gives an up-to-date and comprehensive overview of the effects of energetic particle precipitation (EPP) onto the whole atmosphere, from the lower thermosphere/mesosphere through the stratosphere and troposphere, to the surface. The paper summarizes the different sources and energies of particles, principally galactic cosmic rays (GCRs), solar energetic particles (SEPs) and energetic electron precipitation (EEP). All the proposed mechanisms by which EPP can affect the atmosphere are discussed, including chemical changes in the upper atmosphere and lower thermosphere, chemistry-dynamics feedbacks, the global electric circuit and cloud formation. The role of energetic particles in Earth’s atmosphere is a multi-disciplinary problem that requires expertise from a range of scientific backgrounds. To assist with this synergy, summary tables are provided, which are intended to evaluate the level of current knowledge of the effects of energetic particles on processes in the entire atmosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our numerical simulations show that the reconnection of magnetic field becomes fast in the presence of weak turbulence in the way consistent with the Lazarian and Vishniac (1999) model of fast reconnection. We trace particles within our numerical simulations and show that the particles can be efficiently accelerated via the first order Fermi acceleration. We discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This essay is part of an interdisciplinary research project into literary aesthetics and its relationship with pedagogy. The paper brings cognitive and evolutionary scientific perspectives to bear on literary and cultural theory to address the aesthetic effect (defined as the transporting and transformative power of the literary text) and its potential personal or civic benefits. The paper offers non-transcendentalist explanations for the aesthetic experience, viewing it less as a privileged category of feeling than as an experience available to all symbolic beings. The paper also proposes an original thesis about the virtual and transformative space of reading as one that ultimately epitomises intellectual freedom. The inquiry is lent urgency by the current cultural and political climate in which not only literature but also literary studies, despite its long association with education and its prominent place in the Culture Wars, is in institutional decline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is a bright composition featuring a sweet vibraphone arpeggio accompanied by, piano, bass, synth strings (including an early 1970s modelled synth), percussion and FX.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth/survival trade-off is a fundamental aspect of life-history evolution that is often explained by the direct energetic requirement for growth that cannot be allocated into maintenance. However, there is currently no empirical consensus on whether fast-growing individuals have higher resting metabolic rates at thermoneutrality (RMRt) than slow growers. Moreover, the link between growth rate and daily energy expenditure (DEE) has never been tested in a wild endotherm. We assessed the energetic and survival costs of growth in juvenile eastern chipmunks (Tamias striatus) during a year of low food abundance by quantifying post-emergent growth rate (n = 88), RMRt (n = 66), DEE (n = 20), and overwinter survival. Both RMRt and DEE were significantly and positively related to growth rate. The effect size was stronger for DEE than RMRt, suggesting that the energy cost of growth in wild animals is more likely to be related to the maintenance of a higher foraging rate (included in DEE) than to tissue accretion (included in RMRt). Fast growers were significantly less likely to survive the following winter compared to slow growers. Juveniles with high or low RMRt were less likely to survive winter than juveniles with intermediate RMRt. In contrast, DEE was unrelated to survival. In addition, botfly parasitism simultaneously decreased growth rate and survival, suggesting that the energetic budget of juveniles was restricted by the simultaneous costs of growth and parasitism. Although the biology of the species (seed-storing hibernator) and the context of our study (constraining environmental conditions) were ideally combined to reveal a direct relationship between current use of energy and future availability, it remains unclear whether the energetic cost of growth was directly responsible for reduced survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. As understanding of the energetic costs of reproduction in birds and mammals continues to improve, oxidative stress is an increasingly cited example of a non-energetic cost of reproduction that may serve as a proximal physiological link underlying life-history trade-offs.

2. Here, we provide the first study to measure daily energy expenditure (DEE) and oxidative damage in a wild population. We measured both traits on eastern chipmunks (Tamias striatus) and assessed their relationships with age, reproductive status, litter size and environmental conditions.

3. We found that both physiological traits were correlated with environmental characteristics (e.g. temperature, seasons). DEE tended to increase with decreasing temperature, while oxidative damage was lower in spring, after a winter of torpor expression, than in autumn. We also found that DEE decreased with age, while oxidative damage was elevated in young individuals, reduced in animals of intermediate age and tended to increase at older age.

4. After controlling for age and environmental variables, we found that both female DEE and oxidative damage increased with litter size, although the latter increased weakly.

5. Our results corroborate findings from laboratory studies but highlight the importance of considering environmental conditions, age and reproductive status in broader analyses of the causes and consequences of physiological costs of reproduction in wild animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy and nutrient demands of parasites on their hosts are frequently invoked as an explanation for negative impacts of parasitism on host survival and reproductive success. Although cuterebrid bot flies are among the physically largest and most-studied insect parasites of mammals, the only study conducted on metabolic consequences of bot fly parasitism revealed a surprisingly small effect of bot flies on host metabolism. Here we test the prediction that bot fly parasitism increases the resting metabolic rate (RMR) of free-ranging eastern chipmunks (Tamias striatus), particularly in juveniles who have not previously encountered parasites and have to allocate energy to growth. We found no effect of bot fly parasitism on adults. In juveniles, however, we found that RMR strongly increased with the number of bot fly larvae hosted. For a subset of 12 juveniles during a year where parasite prevalence was particularly high, we also compared the RMR before versus during the peak of bot fly prevalence, allowing each individual to act as its own control. Each bot fly larva resulted in a ~7.6% increase in the RMR of its host while reducing juvenile growth rates. Finally, bot fly parasitism at the juvenile stage was positively correlated with adult stage RMR, suggesting persistent effects of bot flies on RMR. This study is the first to show an important effect of bot fly parasitism on the metabolism and growth of a wild mammal. Our work highlights the importance of studying cost of parasitism over multiple years in natural settings, as negative effects on hosts are more likely to emerge in periods of high energetic demand (e.g. growing juveniles) and/or in harsh environmental conditions (e.g. low food availability).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Animals respond to environmental variation by exhibiting a number of different behaviours and/or rates of activity, which result in corresponding variation in energy expenditure. Successful animals generally maximize efficiency or rate of energy gain through foraging. Quantification of all features that modulate energy expenditure can theoretically be modelled as an animal energetic niche or power envelope; with total power being represented by the vertical axis and n-dimensional horizontal axes representing extents of processes that affect energy expenditure. Such an energetic niche could be used to assess the energetic consequences of animals adopting particular behaviours under various environmental conditions. This value of this approach was tested by constructing a simple mechanistic energetics model based on data collected from recording devices deployed on 41 free-living Magellanic penguins (Spheniscus magellanicus), foraging from four different colonies in Argentina and consequently catching four different types of prey. Energy expenditure was calculated as a function of total distance swum underwater (horizontal axis 1) and maximum depth reached (horizontal axis 2). The resultant power envelope was invariant, irrespective of colony location, but penguins from the different colonies tended to use different areas of the envelope. The different colony solutions appeared to represent particular behavioural options for exploiting the available prey and demonstrate how penguins respond to environmental circumstance (prey distribution), the energetic consequences that this has for them, and how this affects the balance of energy acquisition through foraging and expenditure strategy.