917 resultados para endothelial function


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Research detailing the normal vascular adaptions to high altitude is minimal and often confounded by pathology (e.g. chronic mountain sickness) and methodological issues. We examined vascular function and structure in: (1) healthy lowlanders during acute hypoxia and prolonged (∼2 weeks) exposure to high altitude, and (2) high-altitude natives at 5050 m (highlanders). In 12 healthy lowlanders (aged 32 ± 7 years) and 12 highlanders (Sherpa; 33 ± 14 years) we assessed brachial endothelium-dependent flow-mediated dilatation (FMD), endothelium-independent dilatation (via glyceryl trinitrate; GTN), common carotid intima–media thickness (CIMT) and diameter (ultrasound), and arterial stiffness via pulse wave velocity (PWV; applanation tonometry). Cephalic venous biomarkers of free radical-mediated lipid peroxidation (lipid hydroperoxides, LOOH), nitrite (NO2) and lipid soluble antioxidants were also obtained at rest. In lowlanders, measurements were performed at sea level (334 m) and between days 3–4 (acute high altitude) and 12–14 (chronic high altitude) following arrival to 5050 m. Highlanders were assessed once at 5050 m. Compared with sea level, acute high altitude reduced lowlanders’ FMD (7.9 ± 0.4 vs. 6.8 ± 0.4%; P = 0.004) and GTN-induced dilatation (16.6 ± 0.9 vs. 14.5 ± 0.8%; P = 0.006), and raised central PWV (6.0 ± 0.2vs. 6.6 ± 0.3 m s−1P = 0.001). These changes persisted at days 12–14, and after allometrically scaling FMD to adjust for altered baseline diameter. Compared to lowlanders at sea level and high altitude, highlanders had a lower carotid wall:lumen ratio (∼19%, P ≤ 0.04), attributable to a narrower CIMT and wider lumen. Although both LOOH and NO2 increased with high altitude in lowlanders, only LOOH correlated with the reduction in GTN-induced dilatation evident during acute (n = 11, r = −0.53) and chronic (n = 7, r = −0.69; P ≤ 0.01) exposure to 5050 m. In a follow-up, placebo-controlled experiment (n = 11 healthy lowlanders) conducted in a normobaric hypoxic chamber (inspired O2 fraction () = 0.11; 6 h), a sustained reduction in FMD was evident within 1 h of hypoxic exposure when compared to normoxic baseline (5.7 ± 1.6 vs. 8.0 ±1.3%; P < 0.01); this decline in FMD was largely reversed following α1-adrenoreceptor blockade. In conclusion, high-altitude exposure in lowlanders caused persistent impairment in vascular function, which was mediated partially via oxidative stress and sympathoexcitation. Although a lifetime of high-altitude exposure neither intensifies nor attenuates the impairments seen with short-term exposure, chronic high-altitude exposure appears to be associated with arterial remodelling.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Obestatin is a gastrointestinal peptide with established metabolic actions and emerging vascular effects which involve activation of NO signalling. The aim of this study was to investigate effects of a recently-characterised stable analogue, PEGylated obestatin (PEG-OB), in the setting of diet-induced obesity which is associated with both metabolic and vascular dysfunction. Methods: Male Sprague Dawley rats (6 weeks; n=8) were maintained on standard (SD) or high fat (HF) diet (60% fat) for 8 weeks with once-daily injection of either PEG-OB (50nmol/kg/day) or saline from 2 weeks. Results: HF feeding for 8 weeks resulted in marked body weight gain which was not affected by chronic PEG-OB treatment (HF saline, 175.0±12.2; HF PEG-OB, 190.4±6.4g; P=NS). Similarly, blood glucose, as indicated by HbA1c (HF saline, 6.30±0.15; HF PEG-OB, 6.13±0.36%; P=NS) and insulin tolerance (HF saline, 105.2±52.5; HF PEG-OB, 90.3±45.4mmol/L.min; P=NS), were unaltered by PEG-OB. Despite the apparent lack of metabolic effects, chronic PEG-OB treatment markedly attenuated development of HF-induced hypertension (HF saline, 146.5±4.9mmHg; HF PEG-OB, 123.0±9.7mmHg; P<0.01), assessed by tail-cuff plethysmography. Furthermore, organ bath pharmacology in isolated aortic rings, indicated that HF diet-induced endothelial dysfunction was completely prevented by PEG-OB (acetylcholine, EC50: SD saline, 335±113; HF saline, 758±164; HF PEG-OB, 277±85nmol/L; P<0.05). However, contraction to phenylephrine and relaxation to the NO donor, sodium nitroprusside, were unaltered between groups. Conclusions: PEG-OB exerts beneficial effects on hypertension and endothelial function in diabetes independently of metabolic actions suggesting that obestatin signalling may represent a novel therapeutic target to reduce the risk of associated cardiovascular complications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

AIMS: Aldosterone plays a crucial role in cardiovascular disease. 'Systemic' inhibition of its mineralocorticoid receptor (MR) decreases atherosclerosis by reducing inflammation and oxidative stress. Obesity, an important cardiovascular risk factor, is an inflammatory disease associated with increased plasma aldosterone levels. We have investigated the role of the 'endothelial' MR in obesity-induced endothelial dysfunction, the earliest stage in atherogenesis. METHODS AND RESULTS: C57BL/6 mice were exposed to a normal chow diet (ND) or a high-fat diet (HFD) alone or in combination with the MR antagonist eplerenone (200 mg/kg/day) for 14 weeks. Diet-induced obesity impaired endothelium-dependent relaxation in response to acetylcholine, whereas eplerenone treatment of obese mice prevented this. Expression analyses in aortic endothelial cells isolated from these mice revealed that eplerenone attenuated expression of pro-oxidative NADPH oxidase (subunits p22phox, p40phox) and increased expression of antioxidative genes (glutathione peroxidase-1, superoxide dismutase-1 and -3) in obesity. Eplerenone did not affect obesity-induced upregulation of cyclooxygenase (COX)-1 or prostacyclin synthase. Endothelial-specific MR deletion prevented endothelial dysfunction in obese (exhibiting high 'endogenous' aldosterone) and in 'exogenous' aldosterone-infused lean mice. Pre-incubation of aortic rings from aldosterone-treated animals with the COX-inhibitor indomethacin restored endothelial function. Exogenous aldosterone administration induced endothelial expression of p22phox in the presence, but not in the absence of the endothelial MR. CONCLUSION: Obesity-induced endothelial dysfunction depends on the 'endothelial' MR and is mediated by an imbalance of oxidative stress-modulating mechanisms. Therefore, MR antagonists may represent an attractive therapeutic strategy in the increasing population of obese patients to decrease vascular dysfunction and subsequent atherosclerotic complications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Le vieillissement vasculaire est caractérisé par une dysfonction de l’endothélium. De nombreux facteurs de risque cardiovasculaire tels que l’obésité et l’hypertension prédisposent l’endothélium à un stress oxydant élevé aboutissant à une dysfonction endothéliale, celle-ci étant communément accompagnée d’une diminution de la biodisponibilité du monoxyde d’azote. Bien que la fonction endothéliale soit un déterminant majeur de la prédiction du risque cardiovasculaire des patients, son évaluation individuelle reste très limitée. En conséquence, il existe un intérêt scientifique grandissant pour la recherche de meilleurs biomarqueurs. L’Angiopoiétine like-2 (angptl2), une protéine identifiée récemment, joue un rôle pro-inflammatoire et pro-oxydant dans plusieurs désordres causés par une inflammation chronique allant de l’obésité à l’athérosclérose. L’inflammation et un stress oxydant accru ont été établis comme des mécanismes sous-jacents à l’apparition d’une dysfonction endothéliale, c’est pourquoi ce travail met l’accent sur le rôle de l’angptl2 dans la dysfonction endothéliale. Plus précisément, ce travail vise à: 1) déterminer les effets aigus de l’angptl2 sur la fonction endothéliale, 2) caractériser la fonction endothéliale et la contribution des différents facteurs relaxants dérivés de l'endothélium (EDRF) dans plusieurs lits vasculaires, et ce, dans un modèle de souris réprimant l’expression de l’angptl2 (knock-down, KD), et 3) examiner si l'absence d'expression angptl2 protège contre la dysfonction endothéliale induite par un régime riche en graisses (HFD) ou par perfusion d'angiotensine II (angII) chez la souris. Dans la première étude, l’incubation aigue avec de l’angptl2 recombinante induit une dysfonction endothéliale dans les artères fémorales isolées de souris de type sauvage (WT), probablement en raison d’une production accrue d'espèces réactives oxygénées. Les artères fémorales de souris angptl2 KD présentent une meilleure fonction endothéliale en comparaison aux souris WT, vraisemblablement par une plus grande contribution de la prostacycline dans la vasodilatation. Après 3 mois d’une diète HFD, les principaux EDRF respectifs des artères fémorales et mésentériques sont conservés uniquement dans les souris angptl2 KD. Cette préservation est associée à un meilleur profil métabolique, une moindre accumulation de triglycérides dans le foie et des adipocytes de plus petite taille. De plus, l’expression de gènes inflammatoires dans ces tissus adipeux n’est augmentée que chez les souris WT. Dans la seconde étude, l’absence d’angptl2 résulte en une production accrue de monoxyde d’azote dans les artères cérébrales isolées par rapport à celles des souris WT. La perfusion chronique d’angII provoque, seulement chez les souris WT, une dysfonction endothéliale cérébrale probablement par le biais d’une augmentation de la production d’espèces réactives oxygénées, probablement dérivé des NADPH oxydase 1 et 2, ainsi que l'augmentation des facteurs constricteurs dérivés de l’endothélium issus de la cyclo-oxygénase. En revanche, l’apocynine réduit la dilatation cérébrale chez les souris KD traitées à l’angII, ce qui suggère le recrutement potentiel d’une voie de signalisation compensatoire impliquant les NADPH oxydases et qui aurait un effet vaso-dilatateur. Ces études suggèrent fortement que l’angptl2 peut avoir un impact direct sur la fonction endothéliale par ses propriétés pro-inflammatoire et pro-oxydante. Dans une optique d’application à la pratique clinique, les niveaux sanguins d’angptl2 pourraient être un bon indicateur de la fonction endothéliale.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The health benefits of green tea (Camellia sinensis) catechins are becoming increasingly recognised. Amongst the proposed benefits are the maintenance of endothelial function and vascular homeostasis and an associated reduction in atherogenesis and CVD risk. The mounting evidence for the influential effect of green tea catechins on vascular function from epidemiological, human intervention and animal studies is subject to review together with exploration of the potential mechanistic pathways involved. Epigallocatechin-3-gallate, one of the most abundant and widely studied catechin found in green tea, will be prominent in the present review. Since there is a substantial inconsistency in the published data with regards to the impact of green tea catechins on vascular function, evaluation and interpretation of the inter- and intra-study variability is included. In conclusion, a positive effect of green tea catechins on vascular function is becoming apparent. Further studies in animal and cell models using physiological concentrations of catechins and their metabolites are warranted in order to gain some insight into the physiology and molecular basis of the observed beneficial effects.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

During red wine aging, there is a loss of anthocyanins and the formation of various other pigments, so-called vitisins A, which are formed through the chemical interaction of the original anthocyanins with pyruvic acid. The objective of this study was to investigate the antioxidant activities of the most abundant anthocyanins present in red wine (glycosides of delphinidin, petunidin, and malvidin) and their corresponding vitisins A. Anthocyanins exhibited a higher iron reducing as well as 2,2'-azinobis (3-ethyl-benzothiazoline-6-sulfonate) and peroxyl radical scavenging activity than their corresponding vitisins A. Delphinidin showed the highest antioxidant effect of the tested compounds in all of the assays used. Furthermore, we studied the effect of anthocyanins and vitisins A on platelet aggregation and monocyte and endothelial function. Anthocyanins and vitisins did not affect nitric oxide production and tumor necrosis factor-alpha (TNF-alpha) secretion in lipopolysaccharide plus interferon-gamma-activated macrophages. Furthermore, anthocyanins and vitisins did not change collagen-induced platelet aggregation in vitro. However, anthocyanins and to a lesser extent vitisins exhibited protective effects against TNF-alpha-induced monocyte chemoattractant protein production in primary human endothelial cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Endothelial cells (EC) express constitutively two major isofonns (Nox2 and Nox4) of the catalytic subunit of NADPH oxidase, which is a major source of endothelial reactive oxygen species. However, the individual roles of these Noxes in endothelial function remain unclear. We have investigated the role of Nox2 in nutrient deprivation-induced cell cycle arrest and apoptosis. In proliferating human dermal microvascular EC, Nox2 mRNA expression was low relative to Nox4 (Nox2:Nox4 similar to 1:13), but was upregulated 24 It after starvation and increased to 8 +/- 3.5-fold at 36 h of starvation. Accompanying the upregulation of Nox2, there was a 2.28 +/- 0.18-fold increase in O-2(-); production, a dramatic induction of p21(cip1) and p53, cell cycle arrest, and the onset of apoptosis (all p < 0.05). All these changes were inhibited significantly by in vitro deletion of Nox2 expression and in coronary microvascular EC isolated from Nox2 knockout mice. In Nox2 knockout cells, although there was a 3.8 +/- 0.5fold increase in Nox4 mRNA expression after 36 h of starvation (p < 0.01), neither production nor the p21(cip1) or p53 expression was increased significantly and only 0.46% of cells were apoptotic. In conclusion, Nox2-derived O-2(-), through the modulation of p21(cip1) and p53 expression, participates in endothelial cell cycle regulation and apoptosis. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Our objective was to determine whether the endothelial nitric oxide synthase (eNOS) Glu298Asp polymorphism influences vascular response to raised NEFA enriched with saturated fatty acids (SFA) or long-chain (LC) n-3 polyunsaturated fatty acids (PUFA). Subjects were prospectively recruited for genotype (Glu298, n = 30 and Asp298, n = 29; balanced for age and gender) consumed SFA on two occasions, with and without the substitution of 0.07 g fat/kg body weight with LC n-3 PUFA, and with heparin infusion to elevate NEFA. Endothelial function was measured before and after NEFA elevation (240 min), with blood samples taken every 30 min. Flow-mediated dilation (FMD) decreased following SFA alone and increased following SFA+LC n-3 PUFA. There were 2-fold differences in the change in FMD response to the different fat loads between the Asp298 and Glu298 genotypes (P = 0.002) and between genders (P < 0.02). Sodium nitroprusside-induced reactivity, measured by laser Doppler imaging with iontophoresis, was significantly greater with SFA+LC n-3 PUFA in all female subjects (P < 0.001) but not in males. Elevated NEFA influences both endothelial-dependent and endothelial-independent vasodilation during the postprandial phase. Effects of fat composition appear to be genotype and gender dependent, with the greatest difference in vasodilatory response to the two fat loads seen in the Asp298 females.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dairy intake, despite its high saturated fatty acid (SFA) content, is associated with a lower risk of cardiovascular disease and diabetes. This in vitro study determined the effect of individual fatty acids (FA) found in dairy, and FA mixtures representative of a high SFA and a low SFA dairy lipid on markers of endothelial function in healthy and type II diabetic aortic endothelial cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background Emerging cellular markers of endothelial damage and repair include endothelial microparticles (EMPs) and endothelial progenitor cells (EPCs) respectively. Effects of long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) and influence of genetic background on these markers are not known. Objective This study investigated the effects of fish oil supplementation on both classical and novel markers of endothelial function in subjects prospectively genotyped for the Asp298 eNOS polymorphism and at moderate risk of CVD. Design 84 subjects with moderate risk of CVD (n=40 GG and n=44 GT/TT) completed a randomized, double-blind, placebo-controlled, 8-week cross-over trial of fish oil supplementation providing 1.5 g/d LC n-3 PUFA. Effects of genotype and fish oil supplementation on the blood lipid profile, inflammatory markers, vascular function (EndoPAT) and numbers of circulating EPCs and EMP (flow cytometry) were assessed. Results There was no significant effect of fish oil supplementation on blood pressure, plasma lipids or plasma glucose, although there was a trend (P = 0.069) towards a decrease in plasma TG concentration after FO supplementation compared to placebo. GT/TT subjects tended to have higher levels of total cholesterol and LDL-cholesterol, but vascular function was not affected by either treatment or eNOS genotype. Biochemical markers of endothelial function were also unaffected by treatment and eNOS genotype. In contrast, there was a significant effect of fish oil supplementation on cellular markers of endothelial function. Fish oil supplementation increased numbers of EPCs and reduced numbers of EMPs relative to the placebo, potentially favouring maintenance of endothelial integrity. There was no influence of genotype for any of the cellular markers of endothelial function, indicating that the effects of fish oil supplementation were independent of eNOS genotype. Conclusions Emerging cellular markers of endothelial damage, integrity and repair appear to be sensitive to potentially beneficial modification by dietary n-3 PUFA.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this study was to evaluate the role of cyclooxygenase (COX) in venous vascular reactivity changes after an oral lipid overload (OLO). Venous endothelial function (dorsal hand vein technique) was evaluated in fasting, 30 minutes after COX inhibition (aspirin-fasting), 2 to 4 hours after an OLO (1000 kcal, 58% fat), and again after COX inhibition (aspirin-OLO, 600 mg/200 mL water) in 10 healthy adults (age, 28.1 +/- 1.3 years; body mass index, 22.3 +/- 0.6 kg/m(2)). Fasting, 2- to 4-hour post-OLO, and 60-minute postaspirin plasma glucose, insulin, and lipids were also evaluated. The OLO increased triglycerides and insulin, reduced low-density lipoprotein and high-density lipoprotein, but glycemia and total cholesterol remained unchanged. There were no metabolic differences between OLO and aspirin-OLO. In fasting, aspirin reduced acetylcholine-induced venodilation (107.0% +/- 14% versus 57.3% +/- 11%; P < 0.001). Vascular reactivity was blunted after the OLO (phenylephrine dose: 0.3 +/- 0.2 fasting versus 1.9 +/- 0.8 nmol/min after OLO; P < 0.001) and was partially corrected by aspirin (0.4 +/- 0.2; P < 0.001). Similar changes were observed in maximum venodilation after acetylcholine (107.0% +/- 14% fasting versus 60.4% +/- 9% after OLO, P < 0.001; aspirin-OLO: 95.9% +/- 6%; P < 0.001). The responses to sodium nitroprusside remained unchanged during the study. We conclude that the OLO reduction in the endothelium-dependent venoconstruction and venodilation is partially the result of the action of COX.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cardiovascular disease is less frequent in premenopausal women than in age-matched men or postmenopausal women. Moreover, the marked age-related decline in serum dehydroepiandrosterone (DHEA) level has been associated to cardiovascular disease. The aim of this study was to evaluate the effects of DHEA treatment on vascular function in ovariectomized rats. At 8 weeks of age, female Wistar rats were ovariectomized (OVX) or sham (SHAM) operated and 8 weeks after surgery both groups were treated with vehicle or DHEA (10 mg kg-1 week-1) for 3 weeks. Aortic rings were used to evaluate the vasoconstrictor response to phenylephrine (PHE) and the relaxation responses to acetylcholine (ACh) and sodium nitroprusside (SNP). Tissue reactive oxygen species (ROS) production and SOD, NADPH oxidase and eNOS protein expression were analysed. PHE-induced contraction was increased in aortic rings from OVX compared to SHAM, associated with a reduction in NO bioavailability. Furthermore, the relaxation induced by ACh was reduced in arteries from OVX, while SNP relaxation did not change. The incubation of aortic rings with SOD or apocynin restored the enhanced PHE-contraction and the impaired ACh-relaxation only in OVX. DHEA treatment corrected the increased PHE contraction and the impaired ACh-induced relaxation observed in OVX by an increment in NO bioavailability and decrease in ROS production. Besides, DHEA treatment restores the reduced Cu/Zn-SOD protein expression and eNOS phosphorylation and the increased NADPH oxidase protein expression in the aorta of OVX rats. The present results suggest an important action of DHEA, improving endothelial function in OVX rats by acting as an antioxidant and enhancing the NO bioavailability.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background and purpose: The present study was designed to assess whether cyclooxygenase-2 (COX-2) activation is involved in the effects of chronic aldosterone treatment on endothelial function of mesenteric resistance arteries (MRA) from Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Experimental approach: Relaxation to acetylcholine was measured in MRA from both untreated and aldosterone-treated strains. Vasomotor responses to prostacyclin and U46619 were also analysed. Release of 6-oxo-prostaglandin (PG)F(1 alpha) and thromboxane B(2) (TxB(2)) was determined by enzyme immunoassay. COX-2 protein expression was measured by western blot. Key results: Aldosterone reduced acetylcholine relaxation in MRA from both strains. In MRA from both aldosterone-treated strains the COX-1/2 or COX-2 inhibitor (indomethacin and NS-398, respectively), Tx2 synthesis inhibitor (furegrelate), prostacyclin synthesis inhibitor (tranylcypromine) or Tx2/PG2 receptor antagonist (SQ 29 548), but not COX-1 inhibitor SC-560, increased acetylcholine relaxation. In untreated rats this response was increased only in SHR. Prostacyclin elicited a biphasic vasomotor response: lower concentrations elicited relaxation, whereas higher concentrations elicited contraction that was reduced by SQ 29 548. Aldosterone increased the acetylcholine-stimulated production of 6-oxo-PGF(1 alpha) and TxB(2) in MRA from both strains. COX-2 expression was higher in both strains of rats treated with aldosterone. Conclusions and implications: Chronic treatment with aldosterone impaired endothelial function in MRA under normotensive and hypertensive conditions by increasing COX-2-derived prostacyclin and thromboxane A(2). As endothelial dysfunction participates in the pathogenesis of many cardiovascular disorders we hypothesize that anti-inflammatory drugs, specifically COX-2 inhibitors, could ameliorate vascular damage in patients with elevated aldosterone production.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aims: The premise that intrauterine malnutrition plays an important role in the development of cardiovascular and renal diseases implies that these disorders can be programmed during fetal life. Here, we analyzed the hypothesis that supplementation with mixed antioxidant vitamins and essential mineral in early life could prevent later elevation of blood pressure and vascular and renal dysfunction associated with intrauterine malnutrition. Main methods: For this, female Wistar rats were randomly divided into three groups on day 1 of pregnancy: control fed standard chow ad libitum; restricted group fed 50% of the ad libitum intake and a restricted plus micronutrient cocktail group treated daily with a combination of micronutrient (selenium, folate, vitamin C and vitamin E) by oral gavage. Key findings: In adult offspring, renal function and glomerular number were impaired by intrauterine malnutrition. and the prenatal micronutrient treatment did not prevent it. However, increased blood pressure and reduced endothelium-dependent vasodilation were prevented by the micronutrient prenatal treatment. Intrauterine malnutrition also led to reduced NO production associated with increased superoxide generation, and these parameters were fully normalized by this prenatal treatment. Significance: Our current findings indicate that programming alterations during fetal life can be prevented by interventions during the prenatal period, and that disturbance in availability of both antioxidant vitamins and mineral may play a crucial role in determining the occurrence of long-term cardiovascular injury. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sleep-disordered breathing (SDB) represents a risk factor for cardiovascular morbidity after a cerebral ischemic event (acute ischemic event, ischemic stroke, or transient ischemic attack). In the present study, endothelial function and arterial stiffness were analyzed in patients who experienced a postacute ischemic event with relation to SDB, sleep disruption, and nocturnal oxygenation parameters.