938 resultados para electrical conductivity
Alterations in levels of NPK, electrical conductivity and pH of substrate, in cultivation of peppers
Resumo:
The objective of this work was to evaluate the chemical alterations of the substrate in the cultivation of pepper in coconut husk fiber, in a protected environment. Initially, 160 pepper plants ('Eppo') were divided into four blocks, where two pots per block were analyzed every 21 days after transplanting. The cultivation of pepper was carried out in plastic pots of 13 L, containing coconut husk fiber, and placed in double rows with a spacing of 0.5×0.8 m between single rows and 1.10 m between double rows. After removal of the plants from the pots, individual samples of substrate (approximately 1 L) were collected from each pot and dried at ambient temperature. Electrical conductivity (EC), pH, and levels of NH4 +-N, NO3 -, P and K were determined for all periods of the cultivation. These analyses were performed using the method of extraction 1:1.5 v/v. For the conditions which the experiment was conducted, there was an increase in substrate EC, as well as in the levels of nitrogen, phosphorus and potassium.
Nutritional status of the potted chrysanthemum relative to electrical conductivity and salt leaching
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Rapid tests to assess the nutritional status of plants gerbera can make easier the decision of any adjustments in the fertilization of the substrate. The study was conducted to evaluate nutritionally fertigated gerbera plants with increasing levels of electrical conductivity (EC), using portable meters nitrate and potassium, and chlorophyll. For this, two experiments were conducted. A randomized block design with five levels of EC (0.5, 2.0, 3.5, 5.0 and 6.5 dS m-1) and four replications was used. Cherry cultivar was used in the first experiment. In the second experiment, two cultivars (Cherry and Salmon Rose) were used. In the first experiment, the sap of the leaves was subjected to rapid testing of N-NO3- (equipment Cardy Horiba C -141). N-NO3- and K+ (C-131) were determined in the substrate solution. The intensity of the green leaf, in the second experiment was evaluated with portable Chlorophyll Meter. The N content in the indicator leaf in the first and N and K contents in the plant in the second experiment were determined. Rapid tests are presented as good indicators of the level of N-NO3- and K+ in plant tissue, with the advantages of convenience and speed of determination, facilitating monitoring of fertilization of the substrate by producers and technicians.
Resumo:
The quality and the profitability on floriculture are intimately linked to the adequate plant nutrition. In the present research we aimed to evaluate the electrical conductivity (EC) and pH of the substrate solution on four different gerbera cultivars subjected to fertigation, with two nutritive solutions. The experiment was carried out in a greenhouse, from May to July 2006, on the Universidade Estadual Paulista, Botucatu, São Paulo state, Brazil. The experiment was carried out under an experimental design of random blocks, in 4×2 factorial arrangement, with four Gerbera cultivars (Cherry, Golden Yellow, Salmon Rose and Orange) and two nutritive solution concentrations: 0.92 and 1.76 dS m-1 EC) during the vegetative stage, and 1.07 and 2.04 dS m-1 during the reproductive stage (S1 and S2, respectively). The nutrients were applied through fertigation, manually performed every day. The EC and pH values of the substrate solution were evaluated weekly, using the 'pourthru' method. Orange and Cherry cultivars had, respectively, the highest and the lowest electrical conductivity of the substrate solution, and Cherry was the most efficient on the nutrient uptake. The solution S2 showed a trend to accumulate salts in the substrate, but without visual symptoms of plant toxicity, leading to the lowest pH values. The 'pourthru' method was efficient when compared to the 1:2 method and can be adopted for substrate solution analysis in gerbera culture.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A very simple method based on electrical conductivity and pH measurements was proposed for assessing reactivity of pozzolans. Calcium hydroxide: pozzolan water suspensions were monitored by means of measurements of electrical conductivity and pH values. In these suspensions, Ca(OH)(2) in solid state was initially present, being them, thus, saturated in this reagent. Three testing temperatures were selected (40, 50 and 60 degrees C). In the experiments carried out, calcium hydroxide was suspended in deionized water for yielding a lime saturated suspension. The addition of siliceous pozzolan (two types of rice husk ash RHA and two types of densified silica fume DSF were tested) to the saturated lime suspension can produce the unsaturation of the system, depending on the testing time, testing temperature and reactivity of pozzolan. When unsaturation was reached, the loss of electrical conductivity was higher than 30% and the variation of pH was higher than 0.15 units. These threshold values were selected for characterizing the reactivity of pozzolans by means of a proposed template, classifying the pozzolan in three different reactivity levels.
Resumo:
The aim of this study was to adapt the methodology of the accelerated aging and electrical conductivity tests for determination of physiological potential in crambe seeds. Six seed lots of crambe (cv. FMS Brilhante) were subjected to determination of moisture content, germination test, first count germination, emergence, and emergence speed index. For the accelerated aging test, the traditional methodology was used with water, and with a saturated potassium chloride and sodium chloride solution in three periods of exposure (24, 48, and 72 hours) at 41 degrees C; the electrical conductivity test was performed with four pre-soaking treatments (0, 2, 4, and 8 hours) and four soaking periods (4, 8, 16, and 24 hours) at 25 degrees C. The accelerated aging test with water for 72 hours and the electrical conductivity test with 2 hours of pre-soaking and assessment after 16 hours were effective for classification of the crambe seed lots in regard to physiological quality.
Resumo:
The influence of deposition parameters, namely polymer concentration and pH of the deposition solution, cleaning, and drying steps on the morphology and electrical characteristics of polyaniline and sulfonated polystyrene (PANI/PSS) nanostructured films deposited by the self-assembly technique is evaluated by UV-Vis spectroscopy, optical and atomic force microscopy, and electrical resistance measurements. It is found that stirring the cleaning solution during the cleaning step is crucial for obtaining homogenous films. Stirring of the cleaning solution also influences the amount of PANI adsorbed in the films. In this regard, the drying process seems to be less critical since PANI amount and film thickness are similar in films dried with N-2 flow or with an absorbent tissue. It is observed, however, that drying with N-2 flow results in rougher films. As an additional point, an assessment of the influence of the deposition method (manual versus mechanical) on the film characteristics was carried out. A significant difference on the amount of PANI and film thickness between films prepared by different human operators and by a homemade mechanical device was observed. The variability in film thickness and PANI adsorbed amount is smaller in films mechanically assembled. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Ion implantation of metal species into insulators provides a tool for the formation of thin, electrically conducting, surface layers with experimenter-controlled resistivity. High energy implantation of Pt and Ti into alumina accelerator components has been successfully employed to control high voltage surface breakdown in a number of cases. In the work described here we have carried out some basic investigations related to the origin of this phenomenon. By comparison of the results of alumina implanted with Ti at 75 keV with the results of prior investigations of polymers implanted with Pt at 49 eV and Au at 67 eV, we describe a physical model of the effect based on percolation theory and estimate the percolation parameters for the Ti-alumina composite. We estimate that the percolation dose threshold is about 4 x 10(16) cm(-2) and the maximum dose for which the system remains an insulator-conductor composite is about 10 x 10(16) cm(-2). The saturation electrical conductivity is estimated to be about 50 S/m. We conclude that the observed electrical conductivity properties of Ti-implanted alumina can be satisfactorily described by percolation theory. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3697900]
Resumo:
The effects of substituting Si by M4+ cations in soda-lime silica glasses were analyzed by impedance spectroscopy in the frequency range of 1 Hz-1 MHz. The glass composition was (mol%) 22Na(2)O center dot 8CaO center dot 65SiO(2)center dot 5MO(2), M = Si, Ti, Ge, Zr, Sn, and Ce. Although the Na+ concentration in the glasses is constant, the Zr-containing glass exhibits the highest dc conductivity and the lowest activation energy, while the Ce-containing glass exhibits the lowest conductivity. The activation energies obtained experimentally agree with those obtained by a theoretical equation proposed by Anderson and Stuart. The differences in electrical conductivity presented by the several M-containing glasses are attributed to the effect that the M4+ ion has on the mobility of the diffusing Na+ ion. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Plasticized natural macromolecules-based polymer electrolyte samples were prepared and characterized. The plasticization of chitosonium acetate with glycerol increased the ionic conductivity value from 3.0 x 10(-7) S/cm to 1.1 x 10(-5) S/cm. The conductivity temperature relationship of the samples exhibits either VTF or Arrhenius type depending on the glycerol concentration in the sample. The dielectric studies evidencing the relaxation process in the plasticized sample at low frequency region are due to the electric polarization effect. Moreover, the samples were transparent in the Vis region, showed thermal stability up to 160 degrees C and good surface uniformity.
Resumo:
The development of new procedures for quickly obtaining accurate information on the physiological potential of seed lots is essential for developing quality control programs for the seed industry. In this study, the effectiveness of an automated system of seedling image analysis (Seed Vigor Imaging System - SVIS) in determining the physiological potential of sun hemp seeds and its relationship with electrical conductivity tests, were evaluated. SVIS evaluations were performed three and four days after sowing and data on the vigor index and the length and uniformity of seedling growth were collected. The electrical conductivity test was made on 50 seed replicates placed in containers with 75 mL of deionised water at 25 ºC and readings were taken after 1, 2, 4, 8 and 16 hours of imbibition. Electrical conductivity measurements at 4 or 8 hours and the use of the SVIS on 3-day old seedlings can effectively detect differences in vigor between different sun hemp seed lots.
Resumo:
Among the many aluminum alloys which have been studied are the binary copper-aluminum alloys. These have proven to be among the most useful of the aluminum alloys thus far worked upon.