951 resultados para elastic properties


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The mechanical properties, electronic structure and phonon dispersion of ground state ThO2 as well as the structure behavior up to 240 GPa are studied using first-principles density-functional theory. Our calculated elastic constants indicate that both the ground-state fluorite structure and high pressure cotunnite structure of ThO2 are mechanically stable. The bulk modulus, shear modulus, and Young's modulus of cotunnite ThO2 are all smaller by approximately 25% compared with those of fluorite ThO2. The Poisson's ratios of both structures are approximately equal to 0.3 and the hardness of fluorite ThO2 is 22.4 GPa. The electronic structure and bonding nature of fluorite ThO2 are fully analyzed, and show that the Th-O bond displays a mixed ionic/covalent character. The phase transition from the fluorite to cotunnite structure is calculated to occur at the pressure of 26.5 GPa, consistent with recent experimental measurement by ldiri et al. [1]. For the cotunnite phase it is further predicted that an isostructural transition takes place in the pressure region of 80-130 GPa.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The electronic and mechanical properties of 5d transition metal mononitrides from LaN to AuN are systematically investigated by use of the density-functional theory. For each nitride, Six Structures are considered, i.e., rocksalt, zinc blende, CsCl, wurtzite, NiAs and WC structures. Among the considered structures, rocksalt structure is the most stable for LaN, HfN and ALIN, WC structure for TaN, NiAs structure for WN, wurtzite structure for ReN, OsN, IrN and PtN. The most stable Structure for each nitride is mechanically stable. The formation enthalpy increases from LaN to AuN.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The structural, electronic, and mechanical properties of ReB and ReC have been studied by use of the density functional theory. For each compound, six structures are considered, i.e., hexagonal WC, NiAs, wurtzite, cubic NaCl, CsCl, and zinc-blende type structures. The results indicate that for ReB and ReC, WC type structure is energetically the most stable among the considered structures, followed by NiAs type structure. ReB-WC (i.e., ReB in WC type structure) and ReB-NiAs are both thermodynamically and mechanically stable. ReC-WC and ReC-NiAs are mechanically stable and becomes thermodynamically stable above 35 and 55 GPa, respectively. The estimated hardness from shear modulus is 34 GPa for ReB-WC, 28GPa for ReB-NiAs, 35GPa for ReC-WC and 37GPa for ReC-NiAs, indicating that they are potential candidates to be ultra-incompressible and hard materials.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thermoresponsive polymeric platforms are used to optimise drug delivery in pharmaceutical systems and bioactive medical devices. However, the practical application of these systems is compromised by their poor mechanical properties. This study describes the design of thermoresponsive semi-interpenetrating polymer networks (s-IPNs) based on cross-linked p(NIPAA) or p(NIPAA-co-HEMA) hydrogels containing poly(e-caprolactone) designed to address this issue. Using DSC, the lower critical solution temperature of the co-polymer and p(NIPAA) matrices were circa 34 °C and 32 °C, respectively. PCL was physically dispersed within the hydrogel matrices as confirmed using confocal scanning laser microscopy and DSC and resulted in marked changes in the mechanical properties (ultimate tensile strength, Young's modulus) without adversely compromising the elongation properties. P(NIPAA) networks containing dispersed PCL exhibited thermoresponsive swelling properties following immersion in buffer (pH 7), with the equilibrium-swelling ratio being greater at 20 °C than 37 °C and greatest for p(NIPAA)/PCL systems at 20 °C. The incorporation of PCL significantly lowered the equilibrium swelling ratio of the various networks but this was not deemed practically significant for s-IPNs based on p(NIPAA). Thermoresponsive release of metronidazole was observed from s-IPN composed of p(NIPAA)/PCL at 37 °C but not from p(NIPAA-co-HEMA)/PCL at this temperature. In all other platforms, drug release at 20 °C was significantly similar to that at 37 °C and was diffusion controlled. This study has uniquely described a strategy by which thermoresponsive drug release may be performed from polymeric platforms with highly elastic properties. It is proposed that these materials may be used clinically as bioactive endotracheal tubes, designed to offer enhanced resistance to ventilator associated pneumonia, a clinical condition associated with the use of endotracheal tubes where stimulus responsive drug release from biomaterials of significant mechanical properties would be advantageous. © 2012 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present work is an attempt to probe the elastic properties in some dielectric ceramics, by using ultrasonic pulse echo overlap technique. The base Ba6-xSm8+2xTi18O54 and Ca5Nb2TiO12 are very important dielectrics ceramics used for microwave communication as well as for substrate materials. Ultrasonic is one of the most widely used and powerful techniques to measure elastic properties of solids. The ultrasonic technique is nondestructive in nature and the measurements are relatively straightforward to perform. One unique advantantage of the ultrasonic technique is that both static and dynamic properties can be measured simultaneously. The velocity and attenuation coefficients of the ultrasonic waves propagating through a medium are related to the microscopic structure of the material and they provide valuable information about the structural changes in the system. Among the various ultrasonic techniques, the pulse echo overlap method is the most accurate and precise one. In the present case the decreased elastic properties of Cas-XMg,Nb2TiO12 and Cas-,ZnNb2TiO12 ceramics can be attributed to their mixture phases beyond x = 1. Moreover, the abrupt change in elastic properties observed for x >1 can also be correlated to the structural transformation of the materials from their phase pure form to mixture phases for higher extent of substitution of the concerned material . Ca4(ANb2Ti)012 (A = Mg, Zn) is the strongest compound with the maximum values for elastic properties . This could be due to the possible substitution of Mg/Zn ions with lesser radius [25] than Ca2+ in perovskite B-site of Ca(Cali4Nb2i4Tili4) O3 material to contribute more ordering and symmetry to the system [20]. All other compositions (x > 1) contain mixed-phases and for such mixed-phase samples, the mechanical properties are difficult to explain.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ultrasonic is a good tool to investigate the elastic properties of crystals. It enables one to determine all the elastic constants, Poisson’s ratios, volume compressibility and bulk modulus of crystals from velocity measurements. It also enables one to demonstrate the anisotropy of elastic properties by plotting sections of the surfaces of phase velocity, slowness, group velocity, Young’s modulus and linear compressibility along the a-b, b-c and a-c planes. They also help one to understand more about phonon amplification and help to interpret various phenomena associated with ultrasonic wave propagation, thermal conductivity, phonon transport etc. Study of nonlinear optical crystals is very important from an application point of view. Hundreds of new NLO materials are synthesized to meet the requirements for various applications. Inorganic, organic and organometallic or semiorganic classes of compounds have been studied for several reasons. Semiorganic compounds have some advantages over their inorganic and inorganic counterparts with regard to their mechanical properties. High damage resistance, high melting point, good transparency and non-hygroscopy are some of the basic requirements for a material to be suitable for device fabrication. New NLO materials are being synthesized and investigation of the mechanical and elastic properties of these crystals is very important to test the suitability of these materials for technological applications

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Elastic properties of sodium doped Lithium potassium sulphate, LiK0.9Na0.1SO4, crystal has been studied by ultrasonic Pulse Echo Overlap [PEO] technique and are reported for the first time. The controversy regarding the type of crystal found while growth is performed at 35 °C with equimolar fraction of Li2SO4H2O, K2SO4 and Na2SO4 has been resolved by studying the elastic properties. The importance of this crystal is that it exhibits pyroelectric, ferroelectric and electro optic properties. It is simultaneously ferroelastic and superionic. The elastic properties of LiK0.9Na0.1SO4 crystal are well studied by measuring ultrasonic velocity in the crystal in certain specified crystallographic directions and evaluating the elastic stiffness constants, compliance constants and Poisson’s ratios. The anisotropy in the elastic properties of the crystal are well explained by the pictorial representation of the surface plots of phase velocity, slowness and linear compressibility in a-b and a-c planes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nanocomposites based on natural rubber and nano-sized nickelwere synthesized by incorporating nickel nanoparticles in a natural rubber matrix for various loadings of the filler. Structural, morphological, magnetic and mechanical properties of the compositeswere evaluated along with a detailed study of dielectric properties. Itwas found that nickel particleswere uniformly distributed in the matrix without agglomeration resulting in a magnetic nanocomposite. The elastic properties showed an improvement with increase in filler content but breaking stress and breaking strain were found to decrease. Dielectric permittivity was found to decrease with increase in frequency, and found to increase with increase in nickel loading. The decrease in permittivity with temperature is attributed to the high volume expansivity of rubber at elevated temperatures. Dielectric loss of blank rubber as well as the composites was found to increase with temperature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Despite recent research exploring the elastic properties of avian keratins, data on failure properties are less common in the literature. In this paper we present data on the failure properties and moduli of both avian feather and claw keratin in tension and the modulus of claw keratin in compression. Increased water content acts to decrease stiffness and strength but to increase strain at failure. The modulus of claw did not differ significantly when tested under tension and compression.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The difference between the rate of change of cerebral blood volume (CBV) and cerebral blood flow (CBF) following stimulation is thought to be due to circumferential stress relaxation in veins (Mandeville, J.B., Marota, J.J.A., Ayata, C., Zaharchuk, G., Moskowitz, M.A., Rosen, B.R., Weisskoff, R.M., 1999. Evidence of a cerebrovascular postarteriole windkessel with delayed compliance. J. Cereb. Blood Flow Metab. 19, 679–689). In this paper we explore the visco-elastic properties of blood vessels, and present a dynamic model relating changes in CBF to changes in CBV. We refer to this model as the visco-elastic windkessel (VW) model. A novel feature of this model is that the parameter characterising the pressure–volume relationship of blood vessels is treated as a state variable dependent on the rate of change of CBV, producing hysteresis in the pressure–volume space during vessel dilation and contraction. The VW model is nonlinear time-invariant, and is able to predict the observed differences between the time series of CBV and that of CBF measurements following changes in neural activity. Like the windkessel model derived by Mandeville, J.B., Marota, J.J.A., Ayata, C., Zaharchuk, G., Moskowitz, M.A., Rosen, B.R., Weisskoff, R.M., 1999. Evidence of a cerebrovascular postarteriole windkessel with delayed compliance. J. Cereb. Blood Flow Metab. 19, 679–689, the VW model is primarily a model of haemodynamic changes in the venous compartment. The VW model is demonstrated to have the following characteristics typical of visco-elastic materials: (1) hysteresis, (2) creep, and (3) stress relaxation, hence it provides a unified model of the visco-elastic properties of the vasculature. The model will not only contribute to the interpretation of the Blood Oxygen Level Dependent (BOLD) signals from functional Magnetic Resonance Imaging (fMRI) experiments, but also find applications in the study and modelling of the brain vasculature and the haemodynamics of circulatory and cardiovascular systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Since the 1980s, different devices based on superelastic alloys have been developed to fulfill orthodontic applications. Particularly in the last decades several researches have been carried out to evaluate the mechanical behavior of Ni-Ti alloys, including their tensile, torsion and fatigue properties. However, studies regarding the dependence of elastic properties on residence time of Ni-Ti wires in the oral cavity are scarce. Such approach is essential since metallic alloys are submitted to mechanical stresses during orthodontic treatment as well as pH and temperature fluctuations. The goal of the present contribution is to provide elastic stress-strain results to guide the orthodontic choice between martensitic thermal activated and austenitic superelastic Ni-Ti alloys. From the point of view of an orthodontist, the selection of appropriate materials and the correct maintenance of the orthodontic apparatus are essential needs during clinical treatment. The present work evaluated the elastic behavior of Ni-Ti alloy wires with diameters varying from 0.014 to 0.020 inches, submitted to hysteresis tensile tests with 8% strain. Tensile tests were performed after periods of use of 1, 2 and 3 months in the oral cavity of patients submitted to orthodontic treatment. The results from the hysteresis tests allowed to exam the strain range covered by isostress lines upon loading and unloading, as well as the residual strain after unloading for both superelastic and thermal activated Ni-Ti wires. Superelastic Ni-Ti wires exhibited higher load isostress values compared to thermal activated wires. It was found that such differences in the load isostress values can increase with increasing residence time.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The elastic properties of a Ti3Al intermetallic compound were studied using full potential (FP LAPW ) with the APW+lo method. The FP-LAPW is among the most accurate band structure calculations currently available and is based on the density functional theory with general gradient approximation for the exchange and correlation potential. This method provides the structural properties of the ground state as bulk modulus, equilibrium lattice parameter, and equilibrium minimum energy, and the elastic properties as shear modulus, young modulus, Zener coefficient (anisotropy), and Poisson coefficient. The calculated elastic properties are coherent with the elastic properties of the material.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Lamellar systems composed of lipid bilayers have been widely used as model system for investigating properties of biological membranes, interactions between membranes and with biomolecules. The composition of the membrane determines its three dimensional shape and its properties such as rigidity and compressibility which play an important role on membrane fusion, protein adhesion, interactions between proteins, etc. We present a systematic study of a lamellar system composed of lecithin and a commercial co-surfactant (Simusol), which is a mixture of ethoxylated fatty acids. Using X ray scattering and a new procedure to fit X-ray experimental data, we determine relevant parameters characterizing the lamellar structure, varying membrane composition from 100% of lecithin to 100% of Simulsol. We present experimental data illustrating the swelling behavior for the membrane of different compositions and the respective behavior of the Caillé parameter. From and GISAXS experiments on oriented films under controlled humidity we investigate the compressibility of the lamellar phase and the effect of incorporating co-surfactant. Combining the Caillé parameter and compressibility studies we determine the bending rigidity of membranes. The results obtained with this experimental approach and new procedure to fit X-ray experimental allows us to identify structural changes in the bilayer depending both on hydration and co-surfactant content, with implications on elastic properties of membranes.