964 resultados para effetto Gibbs serie Fourier Fejer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase relations in the system Cu-Gd-O have been determined at 1273 K by X-ray diffrac- tion, optical microscopy, and electron microprobe analysis of samples equilibrated in quartz ampules and in pure oxygen. Only one ternary compound, CuGd2O4, was found to be stable. The Gibbs free energy of formation of this compound has been measured using the solid-state cell Pt, Cu2O + CuGd2O4 + Gd2O3 // (Y2O3) ZrO2 // CuO + Cu2O, Pt in the temperature range of 900 to 1350 K. For the formation of CuGd2O4 from its binary component oxides, CuO (s) + Gd2O3 (s) → CuGd2O4 (s) ΔG° = 8230 - 11.2T (±50) J mol-1 Since the formation is endothermic, CuGd2O4 becomes thermodynamically unstable with respect to CuO and Gd2O3 below 735 K. When the oxygen partial pressure over CuGd2O4 is lowered, it decomposes according to the reaction 4CuGd2O4 (s) → 4Gd2O3 (s) + 2Cu2O (s) + O2 (g) for which the equilibrium oxygen potential is given by Δμo 2 = −227,970 + 143.2T (±500) J mol−1 An oxygen potential diagram for the system Cu-Gd-O at 1273 K is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase relations in the systems Cu–O–R2O3(R = Tm, Lu) have been determined at 1273 K by X-ray diffraction, optical microscopy and electron probe microanalysis of samples equilibrated in evacuated quartz ampules and in pure oxygen. Only ternary compounds of the type Cu2R2O5 were found to be stable. The standard Gibbs energies of formation of the compounds have been measured using solid-state galvanic cells of the type, Pt|Cu2O + Cu2R2O5+ R2O3‖(Y2O3)ZrO2‖CuO + Cu2O‖Pt in the temperature range 950–1325 K. The standard Gibbs energy changes associated with the formation of Cu2R2O5 compounds from their binary component oxides are: 2CuO(s)+ Tm2O3(s)→Cu2Tm2O5(s), ΔG°=(10400 – 14.0 T/K)± 100 J mol–1, 2CuO(s)+ Lu2O3(s)→Cu2Lu2O5(s), ΔG°=(10210 – 14.4 T/K)± 100 J mol–1 Since the formation is endothermic, the compounds become thermodynamically unstable with respect to component oxides at low temperatures, Cu2Tm2O5 below 743 K and Cu2Lu2O5 below 709 K. When the chemical potential of oxygen over the Cu2R2O5 compounds is lowered, they decompose according to the reaction, 2Cu2R2O5(s)→2R2O3(s)+ 2Cu2O(s)+ O2(g) The equilibrium oxygen potential corresponding to this reaction is obtained from the emf. Oxygen potential diagrams for the Cu–O–R2O3 systems at 1273 K are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1984 Jutila [5] obtained a transformation formula for certain exponential sums involving the Fourier coefficients of a holomorphic cusp form for the full modular group SL(2, Z). With the help of the transformation formula he obtained good estimates for the distance between consecutive zeros on the critical line of the Dirichlet series associated with the cusp form and for the order of the Dirichlet series on the critical line, [7]. In this paper we follow Jutila to obtain a transformation formula for exponential sums involving the Fourier coefficients of either holomorphic cusp forms or certain Maass forms for congruence subgroups of SL(2, Z) and prove similar estimates for the corresponding Dirichlet series.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gibbs free energy of formation of the orthorhombic form of CaZrO3(o) from monoclinic ZrO2(m) and periclase CaO(p) has been determined as a function of temperature in the range 950-1225 K, using an electrochemical cell incorporating single-crystal CaF2 as the solid electrolyte. The results are corrected for the small solid solubility of CaO in ZrO2. For the reaction, ZrO2(m) + CaO(p) --> CaZrO3(o), DELTAG(phi) = -31590 -13.9T(+/- 180) J mol-1. The ''second-law'' enthalpy of formation of CaZrO3 obtained from the results of this study at a mean temperature of 1090 K is in excellent agreement with the high-temperature solution calorimetric measurements of Muromachi and Navrotsky at 1068 K (J. Solid State Chem., 72 (1988) 244), and the average value of the bomb and acid solution calorimetric studies of Lvova and Feodosev (Zh. Fiz. Khim., 38 (1964) 28), Korneev et al. (Izv. Akad. Nauk SSSR, Neorg. Mater., 7 (1971) 886) and Brown and Bennington (Thermochim. Acta, 106 (1986) 183). The standard entropy of CaZrO3(o) at 298.15 K from the free energy data is 96.4 (+/- 3.5) J K-1 mol-1. The results of this study are discussed in comparison with high-temperture e.m.f. measurements reported in the literature on cubic zirconia solid solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a pipelined ring algorithm is presented for efficient computation of one and two dimensional Fast Fourier Transform (FFT) on a message passing multiprocessor. The algorithm has been implemented on a transputer based system and experiments reveal that the algorithm is very efficient. A model for analysing the performance of the algorithm is developed from its computation-communication characteristics. Expressions for execution time, speedup and efficiency are obtained and these expressions are validated with experimental results obtained on a four transputer system. The analytical model is then used to estimate the performance of the algorithm for different number of processors, and for different sizes of the input data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase relations in the system Mn-Rh-O are established at 1273 K by equilibrating different compositions either in evacuated quartz ampules or in pure oxygen at a pressure of 1.01 x 10(5) Pa. The quenched samples are examined by optical microscopy, X-ray diffraction, and energy-dispersive X-ray analysis (EDAX). The alloys and intermetallics in the binary Mn-Rh system are found to be in equilibrium with MnO. There is only one ternary compound, MnRh2O4, with normal spinel structure in the system. The compound Mn3O4 has a tetragonal structure at 1273 K. A solid solution is formed between MnRh2O4 and Mn3O4. The solid solution has the cubic structure over a large range of composition and coexists with metallic rhodium. The partial pressure of oxygen corresponding to this two-phase equilibrium is measured as a function of the composition of the spinel solid solution and temperature. A new solid-state cell, with three separate electrode compartments, is designed to measure accurately the chemical potential of oxygen in the two-phase mixture, Rh + Mn3-2xRh2xO4, which has 1 degree of freedom at constant temperature. From the electromotive force (emf), thermodynamic mixing properties of the Mn3O4-MnRh2O4 solid solution and Gibbs energy of formation of MnRh2O4 are deduced. The activities exhibit negative deviations from Raoult's law for most of the composition range, except near Mn3O4, where a two-phase region exists. In the cubic phase, the entropy of mixing of the two Rh3+ and Mn3+ ions on the octahedral site of the spinel is ideal, and the enthalpy of mixing is positive and symmetric with respect to composition. For the formation of the spinel (sp) from component oxides with rock salt (rs) and orthorhombic (orth) structures according to the reaction, MnO (rs) + Rh2O3 (orth) --> MnRh2O4 (sp), DELTAG-degrees = -49,680 + 1.56T (+/-500) J mol-1. The oxygen potentials corresponding to MnO + Mn3O4 and Rh + Rh2O3 equilibria are also obtained from potentiometric measurements on galvanic cells incorporating yttria-stabilized zirconia as the solid electrolyte. From these results, an oxygen potential diagram for the ternary system is developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We define lacunary Fourier series on a compact connected semisimple Lie group G. If f is an element of L-1 (G) has lacunary Fourier series and f vanishes on a non empty open subset of G, then we prove that f vanishes identically. This result can be viewed as a qualitative uncertainty principle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three independent studies have been reported on the free energy of formation of NiWO4. Results of these measurements are analyzed by the �third-law� method, using thermal functions for NiWO4 derived from both low and high temperature heat capacity measurements. Values for the standard molar enthalpy of formation of NiWO4 at 298·15 K obtained from �third-law� analysis are compared with direct calorimetric determinations. Only one set of free energy measurements is found to be compatible with calorimetric enthalpies of formation. The selected value for ?f H m 0 (NiWO4, cr, 298·15 K) is the average of the three calorimetric measurements, using both high temperature solution and combustion techniques, and the compatible free energy determination. A new set of evaluated data for NiWO4 is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The carbon potentials corresponding to the two-phase mixtures Cr + Cr23C6, Cr23C6 + Cr7C3, and Cr7C3 + Cr3C2 in the binary system Cr-C were measured in the temperature range 973 to 1173 K by using the methane-hydrogen gas equilibration technique. Special precautions were taken to prevent oxidation of the samples and to minimize thermal segregation in the gas phase. The standard Gibbs energies of formation of Cr23C6, Cr7C3, and Cr3C2 were derived from the measured carbon potentials. These values are compared with those reported in the literature. The Gibbs energies obtained in this study agree well with those obtained from solid-state cells incorporating CaF2 and ThO2(Y2O3) as solid electrolytes and sealed capsule isopiestic measurements reported in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical potentials oi carbon associated with two three-phase fields in the system U-Mo-C were measured by using the methane-hydrogen gas equilibration technique in the temperature range 973 to 1173K. The technique was validated by measuring the standard Gibbs energy of formation of Mo2C. From the experimentally measured values of the chemical potential of carbon in the ternary phase fields UC+Mo+UMoC1.7 and UC+UMoC1.7+UMoC2 and data for UC from the literature, the Gibbs energies of formation of the two ternary carbides were derived:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase relations in the pseudoternary system CaO-CoO-SiO2 have been established at 1323 K. Three quaternary oxides were found to be stable: CaCoSi2O6 with clinopyroxene (Cpx), Ca2CoSi2O7 with melilite (Mel), and CaCoSiO4 with olivine (Ol) structures. The Gibbs energies of formation of the quaternary oxides from their component binary oxides were measured using solid-state galvanic cells incorporating yttria-stabilized zirconia as the solid electrolyte in the temperature range of 1000-1324 K. The results can be summarized as follows: CoO (rs) + CaO (rs) + 2SiO(2) (Qtz) --> CaCoSi2O6 (Cpx), Delta G(f)(0) = -117920 + 11.26T (+/-150) J/mol CoO (rs) + 2CaO (rs) + 2SiO(2) (Qtz) --> Ca2CoSi2O7 (Mel), Delta G(f)(0) = -192690 + 2.38T (+/-130) J/mol CoO (rs) + CaO (rs) + SiO2 (Qtz) --> CaCoSiO2 (Ol), Delta G(f)(0) = -100325 + 2.55T (+/-100) J/mol where rs = rock salt (NaCl) structure and Qtz = quartz. The uncertainty limits correspond to twice the standard error estimate. The experimentally observed miscibility gaps along the joins CaO-CoO and CaCoSiO4-Co2SiO4 were used to calculate the excess free energies of mixing for the solid solutions CaxCo1-xO and (CayCo1-y)CoSiO4:Delta G(E) = X(1 - X)[31975X + 26736 (1 - X)] J/mol and Delta G(E) = 23100 (+/-250) Y(1 - Y) J/mol. A T-X phase diagram for the binary CaO-CoO was computed from the thermodynamic information; the diagram agrees with information available in the literature. The computed miscibility gap along the CaCoSiO4-Co2SiO4 join is associated with a critical temperature of 1389 (+/-15) K. Stability fields for the various solid solutions and the quaternary compounds are depicted on chemical-potential diagrams for SiO2, CaO, and CoO at 1323 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

he chemical potential of carbon in diamond, relative to its value in graphite, has been directly determined using a solid state electrochemical cell incorporating single crystal CaF2 as the solid electrolyte. The cell can be represented as Pt, C(graphite) + CaC2 + CaF2double vertical barCaF2double vertical barCaF2 + CaC2 + C(diamond), Pt The reversible emf of this cell is directly related by the Nernst equation to the Gibbs free energy change for the conversion of diamond to graphite. The difference in the chemical potential of carbon in the two crystal structures varies linearly with temperature in the range 940 to 1260 K ?C(diamond) ? ?C(graphite) = 1100 + 4.64T (±50) J mol?1 On the average, the values given by the equation are 320 J mol?1 less positive than the currently accepted ones based on calorimetric studies. The difference is primarily in the enthalpy term.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gibbs free energies of formation of strontium and barium zirconates have been determined in the temperature range 960 to 1210 K using electrochemical cells incorporating the respective alkaline-earth fluoride single crystals as solid electrolytes. Pure strontium and barium monoxides were used in the reference electrodes. During measurements on barium zirconate, the oxygen partial pressure in the gas phase over the electrodes was maintained at a low value of 18.7 Pa to minimize the solubility of barium peroxide in the monoxide phase. Strontium zirconate was found to undergo a phase transition from orthorhombic perovskite to) with space group Cmcm; D-2h(17) to tetragonal perovskite (t) having the space group 14/mcm; D-4h(18) at 1123 (+/- 10) K. Barium zirconate does not appear to undergo a phase transition in the temperature range of measurement. It has the cubic perovskite (c) structure. The standard free energies of formation of the zirconates from their component binary oxides AO (A = Sr, Ba) with rock salt (rs) and ZrO2 with monoclinic (m) structures can be expressed by the following relations:SrO (rs) + ZrO2 (m) --> SrZrO3 (o) Delta G degrees = -74,880 - 14.2T (+/-200) J mol(-1) SrO (rs) + ZrO2 (m) --> SrZrO3 (t) Delta G degrees = -73,645 - 15.3T (+/-200) J mol(-1) BaO (rs) + ZrO2 (m) --> BaZrO4 (c) Delta G degrees = -127,760 - 1.79T (+/-250) J mol(-1) The results of this study are in reasonable agreement with calorimetric measurements reported in the literature. Systematic trends in the stability of alkaline-earth zirconates having the stoichiometry AZrO(3) are discussed.