903 resultados para effect of cell size
Resumo:
Australian Magnesium Corporation, in collaboration with the Cooperative Research Centre for Cast Metals Manufacturing (CAST) and Magnesium Elektron Limited, has developed a magnesium alloy, AM-SC1, which has been specifically designed for engine block applications [1]. This alloy has been used for the engine block of the Genois LE turbo charged diesel injection motor developed by AVL List [2].
Resumo:
The formulation of plasmid DNA (pDNA) in cationic liposomes is a promising strategy to improve the potency of DNA vaccines. In this respect, physicochemical parameters such as liposome size may be important for their efficacy. The aim of the current study was to investigate the effect of vesicle size on the in vivo performance of liposomal pDNA vaccines after subcutaneous vaccination in mice. The tissue distribution of cationic liposomes of two sizes, 500 nm (PDI 0.6) and 140 nm (PDI 0.15), composed of egg PC, DOPE and DOTAP, with encapsulated OVA-encoding pDNA, was studied by using dual radiolabeled pDNA-liposomes. Their potency to elicit cellular and humoral immune responses was investigated upon application in a homologous and heterologous vaccination schedule with 3 week intervals. It was shown that encapsulation of pDNA into cationic lipsomes resulted in deposition at the site of injection, and strongest retention was observed at large vesicle size. The vaccination studies demonstrated a more robust induction of OVA-specific, functional CD8+ T-cells and higher antibody levels upon vaccination with small monodisperse pDNA-liposomes, as compared to large heterodisperse liposomes or naked pDNA. The introduction of a PEG-coating on the small cationic liposomes resulted in enhanced lymphatic drainage, but immune responses were not improved when compared to non-PEGylated liposomes. In conclusion, it was shown that the physicochemical properties of the liposomes are of crucial importance for their performance as pDNA vaccine carrier, and cationic charge and small size are favorable properties for subcutaneous DNA vaccination.
A CFD approach on the effect of particle size on char entrainment in bubbling fluidised bed reactors
Resumo:
The fluid – particle interaction inside a 41.7 mg s-1 fluidised bed reactor is modelled. Three char particles of sizes 500 µm, 250 µm, and 100 µm are injected into the fluidised bed and the momentum transport from the fluidising gas and fluidised sand is modelled. Due to the fluidising conditions and reactor design the char particles will either be entrained from the reactor or remain inside the bubbling bed. The particle size is the factor that differentiates the particle motion inside the reactor and their efficient entrainment out of it. A 3-Dimensional simulation has been performed with a completele revised momentum transport model for bubble three-phase flow according to the literature as an extension to the commercial finite volume code FLUENT 6.2.
Resumo:
The particle size, shape and distribution of a range of rotational moulding polyethylenes (PEs) ground to powder was investigated using a novel visual data acquisition and analysis system (TP Picture®), developed by Total Petrochemicals. Differences in the individual particle shape factors of the powder samples were observed and correlations with the grinding conditions were determined. When heated, the bubble dissolution behaviour of the same powders was investigated and the shape factor correlated with densification rate, bubble size and bubble distribution.
Resumo:
This study was undertaken in Napoleon gulf, Lake Victoria Uganda from July – December 2009. It was conducted in four landing sites; Bukaya (0.41103N, 33.19133E), Bugungu (0.40216N, 33.2028E), Busana (0.39062N, 33.25228E) and Kikondo (0.3995N, 33.21848E) all from Buikwe district (Formerly part of Mukono district). The main aim was to determine the effect of both hook size and bait type on the catch rate (mean weight) and size composition of Nile perch (Lates niloticus) (LINNE) fishery in the Napoleon Gulf, Lake Victoria. The main hook sizes investigated during the experiment were 7, 8, 9, 10, 11 and 12 that were dominantly used in harvesting Nile perch in Napoleon Gulf, Lake Victoria. In this study length, weight and bait type data were collected on site from each boat at that particular fishing spot; since most fishermen in the Napoleon Gulf could sell their fish immediately the catch is caught there and then. The results indicated a total of 873 Nile perch fish samples collected during the study. Statistical tests, descriptive statistics, regression and correlation were all carried out using the Statistical Package for the Social Sciences (SPSS) in addition to Microsoft excel. The bait types in the Gulf ranged from 5-10 cm Total length (TL) haplochromine, 24.5-27 cm TL Mormyrus kannume and 9-24 cm TL Clarias species. The bait types had a significant effect on the catch rate and also on the size composition the fish harvested measured as Total length (ANCOVA F=8.231; P<0.05) despite the fact that bait type had no influence on mean weight of fish captured (ANCOVA F=2.898; P>0.05). Hook sizes used by the fishers had a significant effect on the both the size (TL) composition (ANCOVA F=3.847; P<0.05) and the mean weight (ANCOVA F=4.599; P<0.005) of the Nile perch captured. Investigations indicated hook sizes seven (7) and eight (8) were the ones that harvested the Nile perch above the slot size of 50 cm total length. In general hook sizes indicated to be the main drive in the harvesting of the Nile perch though bait type also contributed toward that. Generally there is need for management to put a law in place on the minimum hook size to be used on the harvesting of the Nile perch and also monitored by the Fisheries Management as a regulatory measure. In addition to that aquaculture should be encouraged to farm the fish for bait at a higher scale in the region in order to avoid depleting the wild stocks already in danger of extinction. Through this kind of venture, both biodiversity conservation and environmental sustainability will be observed in the Lake Victoria basin.
Resumo:
The application of different cooling rates as a strategy to enhance the structure of aluminium foams is studied. The potential to influence the level of morphological defects and cell size non-uniformities is investigated. AlSi6Cu4 alloy was foamed through the powder compact route and then solidified, applying three different cooling rates. Foam development was monitored in situ by means of X-ray radioscopy while foaming inside a closed mould. The macro-structure of the foams was analysed in terms of cell size distribution as determined by X-ray tomography. Compression tests were conducted to assess the mechanical performance of the foams and measured properties were correlated with structural features of the foams. Moreover, possible changes in the ductile brittle nature of deformation with cooling rate were analysed by studying the initial stages of deformation. We observed improvements in the cell size distributions, reduction in microporosity and grain size at higher cooling rates, which in turn led to a notable enhancement in compressive strength. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Background The size of the carrier influences the aerosolization of drug from a dry powder inhaler (DPI) formulation. Currently, lactose monohydrate particles in a variety of sizes are preferably used in carrier based DPI formulations of various drugs; however, contradictory reports exist regarding the effect of the size of the carrier on the dispersion of drug. In this study we examined the influence of the intrinsic particle size of the polymeric carrier on the aerosolization of a model drug salbutamol sulphate (SS). Methods Four different sizes (20–150 lm) of polymer carriers were fabricated using solvent evaporation technique and the dispersion of SS particles from these carriers was measured by a Twin Stage Impinger (TSI). The size and morphological properties of polymer carriers were by laser diffraction and SEM, respectively. Results The FPF from these carriers was found to be increasing from 5.6% to 21.3% with increasing the carrier size. The FPF was found to be greater (21%) with the highest particle size of the carrier (150 lm). Conclusions The aerosolization of drug was dependent on the size of polymer carriers. The smaller size of the carrier resulted in lower FPF which was increased with increasing the carrier size. For a fixed mass of drug particles in a formulation, the mass of drug particles per unit area of carriers is higher in formulations containing the larger carriers, which leads to an increase in the dispersion of drug due to the increased mechanical forces occurred between the carriers and the device walls.
Resumo:
A high level of control over quantum dot (QD) properties such as size and composition during fabrication is required to precisely tune the eventual electronic properties of the QD. Nanoscale synthesis efforts and theoretical studies of electronic properties are traditionally treated quite separately. In this paper, a combinatorial approach has been taken to relate the process synthesis parameters and the electron confinement properties of the QDs. First, hybrid numerical calculations with different influx parameters for Si1-x Cx QDs were carried out to simulate the changes in carbon content x and size. Second, the ionization energy theory was applied to understand the electronic properties of Si1-x Cx QDs. Third, stoichiometric (x=0.5) silicon carbide QDs were grown by means of inductively coupled plasma-assisted rf magnetron sputtering. Finally, the effect of QD size and elemental composition were then incorporated in the ionization energy theory to explain the evolution of the Si1-x Cx photoluminescence spectra. These results are important for the development of deterministic synthesis approaches of self-assembled nanoscale quantum confinement structures.
Resumo:
Result of comparative fishing trials with a bulged belly design with three different mesh ranges in the body and wing to study the effect of mesh size difference on the performance of gear is discussed. While there is no significant difference in catch rate, predictably the 40 mm mesh size trawl fared wen when small sized fish like anchovies formed the major catch. The trawls with 60 and 80 mm mesh size gave better horizontal spread at a lower resistance showing savings in fuel.