952 resultados para eddy covariance
Resumo:
全球变化背景下人类生存环境及社会经济的可持续发展要求,使得水循环和碳循环成为科学研究的关注点。湿地与森林、海洋并称为全球三大生态系统,与生态平衡、人类生存和经济社会可持续发展息息相关,特别是湿地的碳汇功能使得其在全球碳循环中具有重要作用。我国湿地面积占亚洲第一位,世界第四位,占世界湿地面积的11.9% 。但是,与森林、草地与农田等生态系统相比,湿地水碳循环控制机制研究的甚少,制约着湿地生态系统的水碳管理。 本论文基于2005~2007 年盘锦芦苇湿地生态系统野外观测站的涡度相关系统的水碳通量和气象环境因子的连续观测数据,结合芦苇湿地生态系统的生物学调查资料,较系统地分析了芦苇湿地生态系统水汽通量和碳通量的动态特征,探讨了不同时间尺度芦苇湿地生态系统水汽通量和碳通量的环境控制机制。主要结论如下: (1)芦苇湿地生态系统蒸散的日、季变化显著。2005~2007 年盘锦芦苇湿地生态系统的年蒸散量分别为432、480 和445 mm。非生长季(11 月~次年4 月)对全年蒸散量的贡献约13~16%,表明在湿地蒸散年总量的估算中不能忽略非生长季的贡献。 (2)关于动力作用和热力作用对芦苇湿地蒸散的贡献表明,能量是驱动芦苇湿地蒸散的重要因素,在小时至月尺度上均起着主导作用;时间尺度越长,能量因子对蒸散变异的解释率越大。仅温度就能解释蒸散月总量变异的95%左右。但是,随着时间尺度的降低,水分条件如饱和水汽压差、相对湿度,对芦苇湿地蒸散的作用逐渐显现。降雨和蒸散的变化虽然没有统计上的相关性,但短时段的降雨可能导致雨后蒸散增强,而持续多天的阴雨天气却能导致蒸散量连续下降。 (3)基于芦苇湿地生态系统作物系数(kc)具有显著日间变异的事实,发展了耦合气温、相对湿度和净辐射影响的芦苇湿地日作物系数模型,弥补了国际粮农组织建议的蒸发散估算模型FAO56 缺乏适宜湿地作物系数的不足。 (4)芦苇湿地生态系统呼吸呈单峰型季节变化,2005~2007 年生态系统呼吸的年总量分别为834、894 和872 g C m-2 yr-1,非生长季芦苇湿地的生态系统呼吸碳排放量为102~136 g C m-2 season-1,占全年生态系统呼吸总量的12~16%。这说明,非生长季湿地生态系统的碳排放通量不可忽视。温度是小时至月尺度的生态系统呼吸控制因子;同时,生物因素也对芦苇湿地生态系统呼吸有显著影响。生态系统呼吸对温度的响应呈指数函数关系,二者间的响应受土壤水分的影响。当表层土壤含水量(5 cm) 为20~25%时,芦苇湿地生态系统呼吸的潜力(Reco,10)最大。生态系统呼吸的日值与地上生物量、叶面积指数呈对数正相关,而与冠层高度呈显著二次曲线关系。生态系统呼吸的年际差异并不是由温度变化引起,而与植被生长状况密切相关。 (5)芦苇湿地生态系统的净碳交换季节变化明显,变化范围在-12.9~4.2 g C m-2 day-1 之间。一般在5~9 月表现为大气CO2 的汇,其余月份为碳源。其中,净碳吸收最大的月份为6、7 月,而净碳排放最大的月份为4、10 月。2005~2007 年的年碳收支分别为-55、-230 和-53 g C m-2 yr-1,呈碳汇。 (6)不同时间尺度的净碳交换控制因子不同。小时尺度上,影响芦苇湿地生态系统净碳交换的环境因子主要是光合有效辐射(PAR) 。芦苇湿地生态系统光合作用的光响应参数(α、Amax 和Reco)随温度指数上升,而与叶面积指数呈线性正相关。光响应参数的这种显著季节波动表明,在生态系统碳循环模型中不应该将生态系统的光合作用参数视为常数,应该考虑采用光响应参数与环境和生物因子间的定量关系来反映光合作用光响应参数动态。日尺度上,温度是芦苇湿地碳交换的主要控制因子,湿地净碳交换在15℃左右由正值变为负值,芦苇湿地由碳源变为碳汇。除温度外,饱和水汽压差对日尺度净碳交换波动也有影响,二者呈二次曲线关系(U 型),当饱和水汽压差在0.8 kPa 附近时,芦苇湿地净碳吸收达到最大。月尺度上,影响芦苇湿地净碳交换的主要环境因子依然是温度,二者间表现出“非对称响应”特征。 (7)对芦苇湿地碳交换各组分间的关系分析表明,芦苇湿地生态系统呼吸和净碳交换均受总光合生产力的显著影响,即通过光合作用产物来源控制。
Resumo:
大气中CO2、CH4和其它温室气体浓度升高导致的全球气候变化引起了人们对全球碳循环和碳收支的关注,植被与大气间CO2通量的长期测定能够加深对陆地生态系统在全球碳循环作用的科学理解。本文以我国北方典型的温带植被类型长白山阔叶红松林为研究对象,利用观测塔上的涡动相关系统对长白山阔仆卜红松林进行长期的CO2通量监测,并分析CO2通量的周年动态,估算森林净生态系统生产力;同时基于测树学方法,进行群落调查,根据已有的经验公式,估算森林净生态系统生产力,综合评价长白山阔汗卜红松林碳收支,为森林碳收支的研究提供基础。主要结论有:(1)FSAM模型的分析结果表明,观测塔上40m高度的涡动相关仪器测量的信息中,76%来自于西北至西南方相对均质的阔叶红松原始林,其中footprint最大的源区在塔西南方100m-400m范围内。因此,森林群落调查选择在此区内进行,使得涡动相关法和测树学方法估算的生产力具有可比性。(2)2003-2004年碳通量季节变化趋势基本一致,从年初到4月上旬该森林生态系统保持较弱的正的碳通量(释放CO2),5月开始表现为净的碳吸收,且吸收量迅速增加,到6月达到最大值,然后又逐渐减小;9月末到10月末随着生长季的结束,净生态系统COZ交换(NEE)开始由负转为正,11-12月NEE为正,生态系统以呼吸为主。净生态系统COZ交换的年累计量表明长白山阔叶红松林为明显的碳汇,2003年和2004年净生态系统生产力NEP分别为-217±75gcm-2a-1和-190±85gcm-2a-1,相当于-2.17±0.75tCha-1a-1和-1.90±0.85tCha-1a-1。(3)根据经验公式和材积法得到阔汗卜红松林的生物量在343.9-362.3tha-l之间,应用两种方法得到2003一2004年群落的净初级生产力在10.22-10.40tCha-1a-1之间,净生态系统生产力在2.50±1.12tCha-1a-1-2.68±1.20tCha-1a-1之间。(4)测树学方法与涡动相关法测得的净生态系统生产力略有差异,但在误差有效范围内基本一致。
Resumo:
Diurnal and seasonal variation of CO_2 flux above the Korean Pine and broad_leaved mixed forest in Changbai Mountain were expounded according to the measurements by eddy covariance technique. The results showed that the diurnal variation during growing season was closely correlated with photosynthetically active radiation (PAR). The forest assimilated the CO_2 in daytime and released in night. The maximum uptake occurred about 9 o'clock of local time in clear day. Assimilation was synchronous to PAR in cloudy day. The night respiration increased with increasing of shallow soil temperature. The CO_2 flux also had obviously seasonal variation that was mainly controlled by temperature. Relationship between monthly net exchange of CO_2 and monthly mean air temperature fit cubic equation. Remarkable uptake occurred in blooming growing season,May to August,and weak respiration occurred in dormant season,October to March,and relatively big release happed in October. Assimilation and respiration were nearly balanced during the transition of growing and dormant seasons. The annual carbon uptake of the ecosystem was-184 gC·m -2 .
Resumo:
Reducing uncertainties in the estimation of land surface evapotranspiration (ET) from remote-sensing data is essential to better understand earth-atmosphere interactions. This paper demonstrates the applicability of temperature-vegetation index triangle (T-s-VI) method in estimating regional ET and evaporative fraction (EF, defined as the ratio of latent heat flux to surface available energy) from MODIS/Terra and MODIS/Aqua products in a semiarid region. We have compared the satellite-based estimates of ET and EF with eddy covariance measurements made over 4 years at two semiarid grassland sites: Audubon Ranch (AR) and Kendall Grassland (KG). The lack of closure in the eddy covariance measured surface energy components is shown to be more serious at MODIS/Aqua overpass time than that at MODIS/Terra overpass time for both AR and KG sites. The T-s-VI-derived EF could reproduce in situ EF reasonably well with BIAS and root-mean-square difference (RMSD) of less than 0.07 and 0.13, respectively. Surface net radiation has been shown to be systematically overestimated by as large as about 60 W/m(2). Satisfactory validation results of the T-s-VI-derived sensible and latent heat fluxes have been obtained with RMSD within 54 W/m(2). The simplicity and yet easy use of the T-s-VI triangle method show a great potential in estimating regional ET with highly acceptable accuracy that is of critical significance in better understanding water and energy budgets on the Earth. Nevertheless, more validation work should be carried out over various climatic regions and under other different land use/land cover conditions in the future.
Resumo:
Based on surface energy flux data measured by eddy covariance methods from China Flux in alpine swamp meadow of the Qinghai Tibetan Plateau in 2005, the daily and seasonal dynamic of surface energy fluxes and their partitioning, as well as abiotic factors effects were analyzed. The results suggested that LE (Latent heat flux) was the largest consumer of the incoming energy. Rn (Net radiation flux) and LE showed clear seasonal variations in sharp hump and up to their maximums in August and July, respectively. H (Sensible heat flux) increased to its peak in August whereafter declined slowly. Precipitation could reduce the components of surface energy. As to Rn and LE, their correlations with abiotic factors were evident while it was not significant in H. Average EBR (Energy balance ratio) was 50.7 %, which was much larger in growing season than non-growing season.
Resumo:
利用涡度相关技术(Eddy covariance technique)、小型蒸渗仪(Mini—lysimeter)和波文比-能量平衡法(BREB)对2005年和2006年夏季(7—8月份)青藏高原海北高寒草甸生态系统的昼间蒸散(E)变化进行了对比观测研究。在观测期间,存在能量不闭合现象,涡度相关系统测定的湍流通量相当于有效能量的73%。3种不同方法测定的蒸散量之间具有较好的相关性,涡度相关系统与小型蒸渗仪测定的蒸散量相关系数达0.96,与波文比法的结果相关系数为0.95。然而,波文比法计算的蒸散量最大,比涡度相关系统的观测值高43%;小型蒸渗仪法的测定值次之,比涡度相关法的观测值高19%;涡度相关法测算的蒸散值最小。研究结果表明,利用涡度相关技术测定该高寒草甸生态系统的潜热通量,可能会过小评价该生态系统的蒸散量。
Resumo:
To understand the carbon dynamics and correlation between net ecosystem CO2 exchange and environmental conditions of alpine meadow ecosystem in the Qinghai-Tibetan Plateau, we analyzed two years (from 2002 to 2003) data measured by eddy covariance method. The results showed that in those two years the ecosystem behaved as the carbon sink and absorbed carbon dioxide 286.74 g/(m2•a) and 284.94 g/(m2•a),respectively. It suggested that there were not distinct correlations between the daily CO2 flux (net ecosystem exchange, NEE) and photosynthetic photon flux density (PPFD) and soil water content (SWC) while daily NEE was evidently corresponded to air temperature. The "turning point air temperature", was meant at that air temperature, when the increase rate of ecosystem photosynthesis (gross primary production, GPP) began to be above the increase rate of ecosystem respiration (Reco), and was 2.47 ℃ by an exponential-linear model established in the alpine meadow. Then, if the precipitation and PPFD doesnt change greatly, moreover, the alpine meadow keeps balance (not lots of variations among years, especially in plant species, plant growth), the capacity of alpine meadow ecosystem carbon sink will be enhanced when the increase of air temperature at above 2.47 ℃, and decreased when that of air temperature at below 2.47 ℃.
Resumo:
In the present study, we used the eddy covariance method to measure CO2 exchange between the atmosphere and an alpine shrubland meadow ecosystem (37°36'N, 101°18'E; 3 250 m a.s.l.) on the Qinghai-Tibetan Plateau, China, during the growing season in 2003, from 20 April to 30 September. This meadow is dominated by formations of Potentilla fruticosa L. The soil is Mol-Cryic Cambisols. During the study period, the meadow was not grazed. The maximum rates of CO2 uptake and release derived from the diurnal course of CO2 flux were -9.38 and 5.02 μmol•m-2•s-1, respectively. The largest daily CO2 uptake was 1.7 g C•m-2•d-1 on 14 July, which is less than half that of an alpine Kobresia meadow ecosystem at similar latitudes. Daily CO2 uptake during the measurement period indicated that the alpine shrubland meadow ecosystem may behave as a sink of atmospheric CO2 during the growing season. The daytime CO2 uptake was correlated exponentially or linearly with the daily photo synthetic photon flux density each month. The daytime average water use efficiency of the ecosystem was 6.47 mg CO2/g H2O. The efficiency of the ecosystem increased with a decrease in vapor pressure deficit.
Resumo:
Through 2-3-year (2003-2005) continuous eddy covariance measurements of carbon dioxide and water vapor fluxes, we examined the seasonal, inter-annual, and inter-ecosystem variations in the ecosystem-level water use efficiency (WUE, defined as the ratio of gross primary production, GPP, to evapotranspiration, ET) at four Chinese grassland ecosystems in the Qinghai-Tibet Plateau and North China. Representing the most prevalent grassland types in China, the four ecosystems are an alpine swamp meadow ecosystem, an alpine shrub-meadow ecosystem, an alpine meadow-steppe ecosystem, and a temperate steppe ecosystem, which illustrate a water availability gradient and thus provide us an opportunity to quantify environmental and biological controls on ecosystem WUE at different spatiotemporal scales. Seasonally, WUE tracked closely with GPP at the four ecosystems, being low at the beginning and the end of the growing seasons and high during the active periods of plant growth. Such consistent correspondence between WUE and GPP suggested that photosynthetic processes were the dominant regulator of the seasonal variations in WUE. Further investigation indicated that the regulations were mainly due to the effect of leaf area index (LAI) on carbon assimilation and on the ratio of transpiration to ET (T/ET). Besides, except for the swamp meadow, LAI also controlled the year-to-year and site-to-site variations in WUE in the same way, resulting in the years or sites with high productivity being accompanied by high WUE. The general good correlation between LAI and ecosystem WUE indicates that it may be possible to predict grassland ecosystem WUE simply with LAI. Our results also imply that climate change-induced shifts in vegetation structure, and consequently LAI may have a significant impact on the relationship between ecosystem carbon and water cycles in grasslands.
Resumo:
To characterize evapotranspiration (ET) over grasslands on the Qinghai-Tibetan Plateau, we examined ET and its relevant environmental variables in a Kobresia meadow from 2002 to 2004 using the eddy covariance method. The annual precipitation changed greatly, with 554, 706, and 666 mm a(-1) for the three consecutive calendar years. The annual ET varied correspondingly to the annual precipitation with 341, 407, and 426 mm a(-1). The annual ET was, however, constant at about 60% of the annual precipitation. About 85% annual ET occurred during the growing season from May to September, and the averaged ET for this period was 1.90, 2.23, and 2.22 mm/d, respectively for the three consecutive years. The averaged ET was, however, very low (< 0.40 mm/d) during the nongrowing season from October to April. The annual canopy conductance (gc) and the Priestley-Taylor coefficient (a) showed the lowest values in the year with the lowest precipitation. This study first demonstrates that the alpine meadow ecosystem is characterized by a low ratio of annual ET to precipitation and that the interannual variation of ET is determined by annual precipitation.
Resumo:
We used an eddy covariance technique to measure evapotranspiration and carbon flux over two very different growing seasons for a typical steppe on the Inner Mongolia Plateau, China. The rainfall during the 2004 growing season (344.7 mm) was close to the annual average (350.43 mm). In contrast, precipitation during the 2005 growing season was significantly lower than average (only 126 mm). The wet 2004 growing season had a higher peak evapotranspiration (4 mm day(-1)) than did the dry 2005 growing season (3.3 mm day(-1)). In 2004, latent heat flux was mainly a consumption resource for net radiation, accounting for similar to 46% of net radiation. However, sensible heat flux dominated the energy budget over the whole growing season in 2005, accounting for 60% of net radiation. The evaporative rate (LE/R-n) dropped by a factor of four from the non-soil stress to soil water limiting conditions. Maximum half-hourly CO2 uptake was -0.68 mg m(-2) s(-1) and maximum ecosystem exchange was 4.3 g CO2 m(-2) day(-1) in 2004. The 2005 drought growing stage had a maximum CO2 exchange value of only -0.22 mg m(-2) s(-1) and a continuous positive integrated-daily CO2 flux over the entire growing season, i.e. the ecosystem became a net carbon source. Soil respiration was temperature dependent when the soil was under non-limiting soil moisture conditions, but this response declined with soil water stress. Water availability and a high vapor pressure deficit severely limited carbon fixing of this ecosystem; thus, during the growing season, the capacity to fix CO2 was closely related to both timing and frequency of rainfall events. (c) 2007 Published by Elsevier Masson SAS.
Resumo:
In this study, we conducted eddy covariance (EC) measurements of water vapor exchange over a typical steppe in a semi-arid area of the Inner Mongolia Plateau, China. Measurement sites were located within a 25-year-old enclosure with a relatively low leaf area index (similar to 1. 5 m(2) m(-2)) and dominated by Leymus chinensis. Energy balance closure was (H + LE) = 17.09 + 0.69 x (Rn - G) (W/m(2); r(2) = 0.95, n = 6596). Precipitation during the two growing seasons of the study period was similar to the long-term average. The peak evapotranspiration in 2004 was 4 mm d(-1), and 3.5 mm d(-1) in 2003. The maximum latent heat flux was higher than the sensible heat flux, and the sensible heat flux dominated the energy budget at midday during the entire growing season in 2003; latent heat flux was the main consumption component for net radiation during the 2004 growing season. During periods of frozen soil in 2003 and 2004, the sensible heat flux was the primary consumption component for net radiation. The soil heat flux component was similar in 2003 and 2004. The decoupling coefficient (between 0.5 and 0.1) indicates that evapotranspiration was strongly controlled by saturation water vapor pressure deficit (VPD) in this grassland. The results of this research suggest that energy exchange and evapotranspiration were controlled by the phenology of the vegetation and soil water content. In addition, the amount and frequency of rainfall significantly affect energy exchange and evapotranspiration upon the Inner Mongolia plateau. (c) 2007 Published by Elsevier B.V.
Resumo:
The eddy covariance technique provides measurements of net ecosystem exchange (NEE) Of CO2 between the atmosphere and terrestrial ecosystems, which is widely used to estimate ecosystem respiration and gross primary production (GPP) at a number Of CO2 eddy flux tower sites. In this paper, canopy-level maximum light use efficiency, a key parameter in the satellite-based Vegetation Photosynthesis Model (VPM), was estimated by using the observed CO2 flux data and photosynthetically active radiation (PAR) data from eddy flux tower sites in an alpine swamp ecosystem, an alpine shrub ecosystem and an alpine meadow ecosystem in Qinghai-Tibetan Plateau, China. The VPM model uses two improved vegetation indices (Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI)) derived from the Moderate Resolution Imaging Spectral radiometer (MODIS) data and climate data at the flux tower sites, and estimated the seasonal dynamics of GPP of the three alpine grassland ecosystems in Qinghai-Tibetan Plateau. The seasonal dynamics of GPP predicted by the VPM model agreed well with estimated GPP from eddy flux towers. These results demonstrated the potential of the satellite-driven VPM model for scaling-up GPP of alpine grassland ecosystems, a key component for the study of the carbon cycle at regional and global scales. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
The alpine meadow ecosystem on the Qinghai-Tibetan Plateau is characterized by low temperatures because of its high elevation. The low-temperature environment may limit both ecosystem photosynthetic CO2 uptake and ecosystem respiration, and thus affect the net ecosystem CO2 exchange (NEE). We clarified the low-temperature constraint on photosynthesis and respiration in an alpine meadow ecosystem on the northern edge of the plateau using flux measurements obtained by the eddy covariance technique in two growing seasons. When we compared NEE during the two periods, during which the leaf area index and other environmental parameters were similar but the mean temperature differed, we found that NEE from 9 August to 10 September 2001, when the average temperature was low, was greater than that during the same period in 2002, when the average temperature was high, but the ecosystem gross primary production was similar during the two periods. Further analysis showed that ecosystem respiration was significantly higher in 2002 than in 2001 during the study period, as estimated from the relationship between temperature and nighttime ecosystem respiration. The results suggest that low temperature controlled the NEE mainly through its influence on ecosystem respiration. The annual NEE, estimated from 15 January 2002 to 14 January 2003, was about 290 g CO2 m(-2) year(-1). The optimum temperature for ecosystem NEE under light-saturated conditions was estimated to be around 15 degrees C.
Resumo:
Thus far, grassland ecosystem research has mainly been focused on low-lying grassland areas, whereas research on high-altitude grassland areas, especially on the carbon budget of remote areas like the Qinghai-Tibetan plateau is insufficient. To address this issue, flux of CO2 were measured over an alpine shrubland ecosystem (37 degrees 36'N, 101 degrees 18'E; 325 above sea level [a. s. l.]) on the Qinghai-Tibetan Plateau, China, for 2 years (2003 and 2004) with the eddy covariance method. The vegetation is dominated by formation Potentilla fruticosa L. The soil is Mol-Cryic Cambisols. To interpret the biotic and abiotic factors that modulate CO2 flux over the course of a year we decomposed net ecosystem CO2 exchange (NEE) into its constituent components, and ecosystem respiration (R-eco). Results showed that seasonal trends of annual total biomass and NEE followed closely the change in leaf area index. Integrated NEE were -58.5 and -75.5 g C m(-2), respectively, for the 2003 and 2004 years. Carbon uptake was mainly attributed from June, July, August, and September of the growing season. In July, NEE reached seasonal peaks of similar magnitude (4-5 g C m(-2) day(-1)) each of the 2 years. Also, the integrated night-time NEE reached comparable peak values (1.5-2 g C m(-2) day(-1)) in the 2 years of study. Despite the large difference in time between carbon uptake and release (carbon uptake time < release time), the alpine shrubland was carbon sink. This is probably because the ecosystem respiration at our site was confined significantly by low temperature and small biomass and large day/night temperature difference and usually soil moisture was not limiting factor for carbon uptake. In general, R-eco was an exponential function of soil temperature, but with season-dependent values of Q(10). The temperature-dependent respiration model failed immediately after rain events, when large pulses of R-eco were observed. Thus, for this alpine shrubland in Qinghai-Tibetan plateau, the timing of rain events had more impact than the total amount of precipitation on ecosystem R-eco and NEE.