993 resultados para ectopic thyroid tissue
Resumo:
Iodide transport is necessary for the synthesis of thyroid hormones following accumulation in the follicular lumen out of thyroid cells, via channels unknown with the exception of pendrin. According to our hypothesis, TMEM16A could be the main molecular identity of the channel mediating iodide efflux in the thyroid gland. TMEM16A is the prior candidate for calcium-activated chloride conductance (CaCC). TMEM16A belongs to the TMEM16/anoctamin family comprising ten members (TMEM16A-K). Higher affinity of TMEM16A for iodide and predicted expression in the thyroid gland suggest its mediation of iodide efflux. The aim of this project was to identify the role of TMEM16A in iodide transport in the thyroid gland, by characterizing its molecular expression and functional properties. We demonstrated that TMEM16F, H, K transcripts are expressed in FRTL-5 thyroid cells, as well as TMEM16A, which is TSH-independent. Tumor tissue from human thyroid maintains TMEM16A expression. Functional in vivo experiments in FRTL-5, stably expressing YFP-H148Q/I152L fluorescent protein as a biosensor, showed that iodide efflux is stimulated by agonists of purinergic receptors with an order of potency of ATP>UTP>ADP (compatible with an involvement of P2Y purinergic receptors), and by agonists of adrenergic receptors (epinephrine, norepinephrine and phenylephrine). Iodide efflux was blocked by α-receptor antagonists prazosin and phentolamine, consistent with a role of α1 adrenergic receptors. Iodide efflux was specifically dependent on calcium mobilized from intracellular compartments and induced by the calcium ionophore ionomycin. CaCC blockers suppressed ionomycin-/ATP-/epinephrine-stimulated iodide efflux. Heterologous expression of TMEM16A in CHO K1 cells induced calcium-activated iodide fluxes. All these results support the hypothesis of the involvement of TMEM16A in calcium-dependent iodide efflux induced by receptor agonists in thyroid cells. TMEM16A may represent a new pharmacological target for thyroid cancer therapy, since its blockade may enhance the retention of radioiodide by tumour cells enhancing the efficacy of radioablative therapy.
Resumo:
The clonal distribution of BRAFV600E in papillary thyroid carcinoma (PTC) has been recently debated. No information is currently available about precursor lesions of PTCs. My first aim was to establish whether the BRAFV600E mutation occurs as a subclonal event in PTCs. My second aim was to screen BRAF mutations in histologically benign tissue of cases with BRAFV600E or BRAFwt PTCs in order to identify putative precursor lesions of PTCs. Highly sensitive semi-quantitative methods were used: Allele Specific LNA quantitative PCR (ASLNAqPCR) and 454 Next-Generation Sequencing (NGS). For the first aim 155 consecutive formalin-fixed and paraffin-embedded (FFPE) specimens of PTCs were analyzed. The percentage of mutated cells obtained was normalized to the estimated number of neoplastic cells. Three groups of tumors were identified: a first had a percentage of BRAF mutated neoplastic cells > 80%; a second group showed a number of BRAF mutated neoplastic cells < 30%; a third group had a distribution of BRAFV600E between 30-80%. The large presence of BRAFV600E mutated neoplastic cell sub-populations suggests that BRAFV600E may be acquired early during tumorigenesis: therefore, BRAFV600E can be heterogeneously distributed in PTC. For the second aim, two groups were studied: one consisted of 20 cases with BRAFV600E mutated PTC, the other of 9 BRAFwt PTCs. Seventy-five and 23 histologically benign FFPE thyroid specimens were analyzed from the BRAFV600E mutated and BRAFwt PTC groups, respectively. The screening of BRAF mutations identified BRAFV600E in “atypical” cell foci from both groups of patients. “Unusual” BRAF substitutions were observed in histologically benign thyroid associated with BRAFV600E PTCs. These mutations were very uncommon in the group with BRAFwt PTCs and in BRAFV600E PTCs. Therefore, lesions carrying BRAF mutations may represent “abortive” attempts at cancer development: only BRAFV600E boosts neoplastic transformation to PTC. BRAFV600E mutated “atypical foci” may represent precursor lesions of BRAFV600E mutated PTCs.
Resumo:
PURPOSE: This pilot study evaluated the wound healing and tissue response after placement of two different skin substitutes in subgingival mucosal pouches in rabbits. MATERIALS AND METHODS: Four rabbits were selected to receive a commercially available skin substitute consisting of a collagen matrix with fibroblasts and an epithelial layer (test membrane 1) and a prototype device consisting of a collagen matrix with fibroblasts only (test membrane 2). In each rabbit, two horizontal incisions were made in the buccal alveolar mucosa of the maxilla bilaterally to create submucosal pouches. Three pouches in each animal were filled with either the test 1 or test 2 membranes, and one pouch was left without a membrane (sham-operated control). All rabbits were sacrificed after a healing period of 4 weeks, and histologic samples were prepared and examined. RESULTS: After a healing period of 1 month, both tested membranes were still visible in the sections. Test membrane 1 was still bilayered, contained inflammatory cells in its center, and was encapsulated by a thick fibrous tissue. Numerous ectopic calcifications were evident in the collagenous part of the membrane and in association with some basal epithelial cells. Test membrane 2 was also encapsulated in fibrous tissue, with inflammatory cells present only between the fibrous encapsulation and the remnants of the membrane. For test membrane 2, no calcifications were visible. CONCLUSIONS: Test membrane 1 seemed to be more resistant to degradation, but there was also a more pronounced inflammatory reaction in comparison to test membrane 2, especially in the vicinity of the keratinocytes. The significance of the ectopic calcifications, along with that of the resorption or degradation processes of both tested membranes, must be evaluated in future experimental studies, with different time points after implantation examine
Resumo:
Intraoperative examination of sentinel axillary lymph nodes can be done by imprint cytology, frozen section, or, most recently, by PCR-based amplification of a cytokeratin signal. Using this technique, benign epithelial inclusions, representing mammary tissue displaced along the milk line, will likely generate a positive PCR signal and lead to a false-positive diagnosis of metastatic disease. To better appreciate the incidence of ectopic epithelial inclusions in axillary lymph nodes, we have performed an autopsy study, examining on 100 μm step sections 3,904 lymph nodes obtained from 160 axillary dissections in 80 patients. The median number of lymph nodes per axilla was 23 (15, 6, and 1 in levels 1, 2, and 3, respectively). A total of 30,450 hematoxylin-eosin stained slides were examined, as well as 8,825 slides immunostained with pan-cytokeratin antibodies. Despite this meticulous work-up, not a single epithelial inclusion was found in this study, suggesting that the incidence of such inclusions is much lower than the assumed 5% reported in the literature.
Resumo:
PURPOSE: The aim of this study was to evaluate the feasibility of applying a previously described dose strategy based on (99m)Tc-pertechnetate thyroid uptake under thyrotropin suppression (TcTU(s)) to radioiodine therapy for unifocal thyroid autonomy. METHODS: A total of 425 consecutive patients (302 females, 123 males; age 63.1+/-10.3 years) with unifocal thyroid autonomy were treated at three different centres with (131)I, using Marinelli's formula for calculation of three different absorbed dose schedules: 100-300 Gy to the total thyroid volume according to the pre-treatment TcTU(s) (n=146), 300 Gy to the nodule volume (n=137) and 400 Gy to the nodule volume (n=142). RESULTS: Successful elimination of functional thyroid autonomy with either euthyroidism or hypothyroidism occurred at a mean of 12 months after radioiodine therapy in 94.5% of patients receiving 100-300 Gy to the thyroid volume, in 89.8% of patients receiving 300 Gy to the nodule volume and in 94.4% receiving 400 Gy to the nodule volume. Reduction in thyroid volume was highest for the 100-300 Gy per thyroid and 400 Gy per nodule strategies (36+/-19% and 38+/-20%, respectively) and significantly lower for the 300 Gy per nodule strategy (28+/-16%; p<0.01). CONCLUSION: A dose strategy based on the TcTU(s) can be used independently of the scintigraphic pattern of functional autonomous tissue in the thyroid.
Resumo:
BACKGROUND: High fructose consumption is suspected to be causally linked to the epidemics of obesity and metabolic disorders. In rodents, fructose leads to insulin resistance and ectopic lipid deposition. In humans, the effects of fructose on insulin sensitivity remain debated, whereas its effect on ectopic lipids has never been investigated. OBJECTIVE: We assessed the effect of moderate fructose supplementation on insulin sensitivity (IS) and ectopic lipids in healthy male volunteers (n = 7). DESIGN: IS, intrahepatocellular lipids (IHCL), and intramyocellular lipids (IMCL) were measured before and after 1 and 4 wk of a high-fructose diet containing 1.5 g fructose . kg body wt(-1) . d(-1). Adipose tissue IS was evaluated from nonesterified fatty acid suppression, hepatic IS from suppression of hepatic glucose output (6,6-2H2-glucose), and muscle IS from the whole-body glucose disposal rate during a 2-step hyperinsulinemic euglycemic clamp. IHCL and IMCL were measured by 1H magnetic resonance spectroscopy. RESULTS: Fructose caused significant (P < 0.05) increases in fasting plasma concentrations of triacylglycerol (36%), VLDL-triacylglycerol (72%), lactate (49%), glucose (5.5%), and leptin (48%) without any significant changes in body weight, IHCL, IMCL, or IS. IHCL were negatively correlated with triacylglycerol after 4 wk of the high-fructose diet (r = -0.78, P < 0.05). CONCLUSION: Moderate fructose supplementation over 4 wk increases plasma triacylglycerol and glucose concentrations without causing ectopic lipid deposition or insulin resistance in healthy humans.
Resumo:
Ectopic acromegaly represents less than 1% of the reported cases of acromegaly. Although clinical improvement is common after treatment with somatostatin (SMS) analogs, the biochemical response and tumor size of the growth hormone-releasing hormone (GHRH)-producing tumor and its metastases are less predictable. Subject A 36-year-old male was referred because of a 3-year history of acromegaly related symptoms. He had undergone lung surgery in 1987 for a "benign" carcinoid tumor. Endocrine evaluation confirmed acromegaly Plasma IGF-1: 984 ng/ml (63-380), GH: 49.8 ng/ml (<5). MRI showed a large mass in the left cerebellopontine angle and diffuse pituitary hyperplasia. Pulmonary, liver and bone metastases were shown by chest and abdominal CT scans. Ectopic GHRH secretion was suspected. Methods Measurement of circulating GHRH levels by fluorescence immunoassay levels and immunohistochemical study of the primary lung tumor and metastatic tissue with anti-GHRH and anti-somatostatin receptor type 2 (sst2A) antibodies. Results Basal plasma GHRH: 4654 pg/ml (<100). Pathological study of liver and bone biopsy material and lung tissue removed 19 years earlier was consistent with an atypical carcinoid producing GHRH and exhibiting sst2A receptor expression. Treatment with octreotide LAR 20-40 mg q. month resulted in normalization of plasma IGF-1 levels. Circulating GHRH levels decreased dramatically. The size of the left prepontine cistern mass, with SMS receptors shown by a radiolabeled pentetreotide scan, decreased by 80% after 18 months of therapy. Total regression of pituitary enlargement was also observed. No changes were observed in lung and liver metastases. After 24 months of therapy the patient is asymptomatic and living a full and active life.
Resumo:
INTRODUCTION: Using a rat model, we evaluated the kinetics and histomorphometry of ectopic bone formation in association with biomimetic implant coatings containing BMP-2. MATERIALS AND METHODS: One experimental and three control groups were set up: titanium-alloy discs coated with a biomimetically co-precipitated layer of calcium phosphate and BMP-2 [1.7 microg per disc (incorporated-BMP group)]; uncoated discs (control); discs biomimetically coated with a layer of calcium phosphate alone (control); and discs biomimetically coated with a layer of calcium phosphate bearing superficially adsorbed BMP-2 [0.98 microg per disc (control)]. Discs (n = 6 per group) were implanted subcutaneously in rats and retrieved at 7-day intervals over a period of 5 weeks for kinetic, histomorphometrical, morphological and histochemical analyses. RESULTS: In the incorporated-BMP-2 group, osteogenic activity was first observed 2 weeks after implantation and thereafter continued unabated until the end of the monitoring period. The net weekly rates of bone formation per disc were 5.8 mm3 at 2 weeks and 3.64 mm3 at 5 weeks. The total volumes of bone formed per disc at these junctures were 5.8 mm3 and 10.3 mm3, respectively. Bone tissue, which was formed by a direct ossification mechanism, was deposited at distances of up to 340 microm from the implant surfaces. The biomimetic coatings were degraded gradually, initially by foreign body giant cells alone and then also by osteoclasts. Forty percent of the coating material (and thus presumably of the incorporated BMP-2) remained at the end of the monitoring period. Hence, 60% of the incorporated BMP-2 had been released. At this 5-week juncture, no bone tissue was associated with any of the control implants. CONCLUSION: BMP-2 incorporated into biomimetic calcium phosphate coatings is capable not only of inducing bone formation at an ectopic site in vivo but also of doing so with a very high potency at a low pharmacological level, and of sustaining this activity for a considerable period of time. The sustainment of osteogenic activity is of great clinical importance for the osseointegration of dental and orthopedic implants.
Resumo:
Plants have a remarkable potential for sustained (indeterminate) postembryonic growth. Following their specification in the early embryo, tissue-specific precursor cells first establish tissues and later maintain them postembryonically. The mechanisms underlying these processes are largely unknown. Here we define local control of oriented, periclinal cell division as the mechanism underlying both the establishment and maintenance of vascular tissue. We identify an auxin-regulated basic helix-loop-helix (bHLH) transcription factor dimer as a critical regulator of vascular development. Due to a loss of periclinal divisions, vascular tissue gradually disappears in bHLH-deficient mutants; conversely, ectopic expression is sufficient for triggering periclinal divisions. We show that this dimer operates independently of tissue identity but is restricted to a small vascular domain by integrating overlapping transcription patterns of the interacting bHLH proteins. Our work reveals a common mechanism for tissue establishment and indeterminate vascular development and provides a conceptual framework for developmental control of local cell divisions.
Resumo:
AIMS Follicular thyroid carcinoma (FTC) has been a diagnostic challenge for decades. The PAX8-PPARγ rearrangement has been detected in FTC and classic papillary thyroid carcinomas (PTCs). The aims of this study were to assess the presence of PAX8-PPARγ by using tissue microarrays in a large cohort of different thyroid neoplasms, and to assess its diagnostic and prognostic implications. METHODS AND RESULTS Fluorescence in-situ hybridization (FISH) analysis for PAX8-PPARγ was performed on 226 thyroid tumours, comprising FTCs (n = 59), PTCs (n = 126), poorly differentiated thyroid carcinomas (PDs; n = 34), follicular thyroid adenomas (FTAs; n = 5), and follicular tumours of unknown malignant potential (FTUMPs; n = 2). PAX8-PPARγ was detected in 12% of FTCs, 1% of PTCs, 7% of PDs, and in both cases of FTUMP. There was no correlation between the extent of capsular or vascular invasion and PAX8-PPARγ, or between lymph node or haematogenous metastasis and PAX8-PPARγ. Overall survival (OS), tumour-specific survival (TSS) and relapse-free-survival (RFS) were not influenced by PAX8-PPARγ. CONCLUSIONS In this study, we demonstrate for the first time the presence of PAX8-PPARγ in PDs and FTUMPs, whereas in FTCs and PTCs the prevalence of PAX8-PPARγ is lower than previously reported. PAX8-PPARγ did not correlate with invasiveness or affect prognosis in any tumour type.
Resumo:
The underlying genetic defects of a congenital disease Nail-Patella Syndrome are loss-of-function mutations in the LMX1B gene. Lmx1b encodes a LIM-homeodomain transcription factor that is expressed specifically in the dorsal limb bud mesenchyme. Gain- and loss-of-function experiments suggest that Lmx1b is both necessary and sufficient to specify dorsal limb patterning. However, how Lmx1b coordinates patterning of the dorsal tissues in the limb, including muscle, skeleton and connective tissues, remains unknown. One possibility is that each tissue specifies its own pattern cell-autonomously, i.e., Lmx1b is expressed in tissues in which it functions and different tissues do not communicate with each other. Another possibility is that tissues that express Lmx1b interact with adjacent tissues and provide patterning information thereby directing the development of tissues non-cell-autonomously. Previous results showed that Lmx1b is expressed in limb connective tissue and skeleton, but is not expressed in muscle tissue. Moreover, muscles and muscle connective tissue are closely associated during development. Therefore, we hypothesize that Lmx1b controls limb muscle dorsal-ventral (DV) patterning through muscle connective tissue, but regulates skeleton and tendon/ligament development cell-autonomously. ^ To test this hypothesis, we first examined when and where the limb dorsal-ventral asymmetry is established during development. Subsequently, conditional knockout and overexpression experiments were performed to delete or activate Lmx1b in different tissues within the limb. Our results show that deletion of Lmx1b from whole limb mesenchyme results in all dorsal tissues, including muscle, tendon/ligament and skeleton, transforming into ventral structures. Skeleton-specific knockout of Lmx1b led to the dorsal duplication of distal sesamoid and metacarpal bones, but did not affect the pattern formation of other tissues, suggesting that Lmx1b controls skeleton development cell-autonomously. In addition, this skeleton-specific pattern alteration only occurs in distal limb tissues, not proximal limb tissues, indicating different regulatory mechanisms operate along the limb proximal-distal axis. Moreover, skeleton-specific ectopic expression of Lmx1b reveals a complementary skeletal-specific dorsalized phenotype. This result supports a cell-autonomous role for Lmx1b in dorsal-ventral skeletal patterning. This study enriched our understanding of limb development, and the insights from this research may also be applicable for the development of other organs. ^
Resumo:
The cellular form of the Prion protein (PrPC) is necessary for prion replication in mice. To determine whether it is also sufficient, we expressed PrP under the control of various cell- or tissue-specific regulatory elements in PrP knockout mice. The interferon regulatory factor-1 promoter/Eμ enhancer led to high PrP levels in the spleen and low PrP levels in the brain. Following i.p. scrapie inoculation, high prion titers were found in the spleen but not in the brain at 2 weeks and 6 months, showing that the lymphoreticular system by itself is competent to replicate prions. PrP expression directed by the Lck promoter resulted in high PrP levels on T lymphocytes only but, surprisingly, did not allow prion replication in the thymus, spleen, or brain following i.p. inoculation. A third transgenic line, which expressed PrP in the liver under the control of the albumin promoter/enhancer—albeit at low levels—also failed to replicate prions. These results show that expression of PrP alone is not sufficient to sustain prion replication and suggest that additional components are needed.
Resumo:
The retinoblastoma protein (Rb) plays a critical role in cell proliferation, differentiation, and development. To decipher the mechanism of Rb function at the molecular level, we have systematically characterized a number of Rb-interacting proteins, among which is the clone C5 described here, which encodes a protein of 1,978 amino acids with an estimated molecular mass of 230 kDa. The corresponding gene was assigned to chromosome 14q31, the same region where genetic alterations have been associated with several abnormalities of thyroid hormone response. The protein uses two distinct regions to bind Rb and thyroid hormone receptor (TR), respectively, and thus was named Trip230. Trip230 binds to Rb independently of thyroid hormone while it forms a complex with TR in a thyroid hormone-dependent manner. Ectopic expression of the protein Trip230 in cells, but not a mutant form that does not bind to TR, enhances specifically TR-dependent transcriptional activity. Coexpression of wild-type Rb, but not mutant Rb that fails to bind to Trip230, inhibits such activity. These results not only identify a coactivator molecule that modulates TR activity, but also uncover a role for Rb in a pathway that responds to thyroid hormone.
Resumo:
Two human cDNAs that encode novel vitamin K-dependent proteins have been cloned and sequenced. The predicted amino acid sequences suggest that both are single-pass transmembrane proteins with amino-terminal γ-carboxyglutamic acid-containing domains preceded by the typical propeptide sequences required for posttranslational γ-carboxylation of glutamic acid residues. The polypeptides, with deduced molecular masses of 23 and 17 kDa, are proline-rich within their putative cytoplasmic domains and contain several copies of the sequences PPXY and PXXP, motifs found in a variety of signaling and cytoskeletal proteins. Accordingly, these two proteins have been called proline-rich Gla proteins (PRGP1 and PRGP2). Unlike the γ-carboxyglutamic acid domain-containing proteins of the blood coagulation cascade, the two PRGPs are expressed in a variety of extrahepatic tissues, with PRGP1 and PRGP2 most abundantly expressed in the spinal cord and thyroid, respectively, among those tissues tested. Thus, these observations suggest a novel physiological role for these two new members of the vitamin K-dependent family of proteins.
Resumo:
The semidominant mutation Liguleless3-O (Lg3-O) causes a blade-to-sheath transformation at the midrib region of the maize (Zea mays L.) leaf. We isolated a full-length lg3 cDNA containing a knotted1-like family homeobox. Six Lg3-O partial revertant alleles caused by insertion of a Mutator (Mu) transposon and two deletion derivatives were isolated and used to verify that our knotted1-like cDNA corresponds to the LG3 message. In wild-type plants the LG3 mRNA is expressed in apical regions but is not expressed in leaves. In mutant plants harboring any of three dominant lg3 alleles (Lg3-O, -Mlg, and -347), LG3 mRNA is expressed in leaf sheath tissue, indicating that the Lg3 phenotype is due to ectopic expression of the gene. The Lg3-O revertant alleles represent two classes of Lg3 phenotypes that correlate well with the level of ectopic Lg3 expression. High levels of ectopic LG3 mRNA expression results in a severe Lg3 phenotype, whereas weak ectopic Lg3 expression results in a mild Lg3 phenotype. We propose that ectopic Lg3 expression early in leaf development causes the blade-to-sheath transformation, but the level of expression determines the extent of the transformation.