991 resultados para dye doped waveguide
Resumo:
自20世纪60年代发展到现在,激光技术发展的速度十分惊人,应用的范围不断拓展,近年来随着有机/聚合物电致发光材料在有机发光二极管上的应用以及有机晶体管和有机太阳能电池的研制成功,科学家们开始了有机/聚合物材料放大自发发射和激光发射行为的研究。到目前为止,已经开发出了这种廉价、可以大面积成膜的、具有更广泛应用范围的有机/聚合物固体激光材料及光泵浦激光器。有机/聚合物激光器的出现不仅向传统激光理论提出了新的挑战,而且具有诸多潜在的应用价值。可以断言,在21世纪知识经济的大潮中,有机/聚合物激光器的研究必将推动传统学科的发展和新兴学科形成,也必将为人类带来巨大的经济效益。新的有机激光材料不断涌现、器件结构不断推陈出新、新的激发原理不断提出并得到修正已经成为有机/聚合物固体激光研究领域的三大特点。本论文进行了利用Förster能量传递对荧光染料DCJTB放大自发发射行为的优化、基于放大自发发射的红光染料DCJTB掺杂聚合物薄膜的白光发射、多孔结构对荧光染料放大自发发射行为的优化以及基于纳米结构的荧光染料DCJTB掺杂聚合物薄膜的激光行为等方面的研究工作,具体研究内容如下: 1、利用Förster能量传递理论,系统地研究了两种或三种染料共掺杂聚合物薄膜的放大自发发射(ASE)行为。研究表明,两种染料共掺杂显著改善了掺杂聚合物薄膜的ASE阈值、增益和损耗特性,而三种染料共掺杂,由于更多的Förster能量传递,使掺杂聚合物薄膜的ASE阈值、增益和损耗性能得到了进一步的改善。将Alq3和C545T两种绿光染料同时掺杂到DCJTB:PS中,通过利用Alq3和C545T同时的能量传递效应,已经使Alq3:C545T:DCJTB:PS薄膜的阈值、增益和损耗分别达到了0.007 mJ/pulse、52 cm-1和7 cm-1。 2、将红色荧光染料DCJTB掺杂到蓝色聚合物PFO中,通过控制DCJTB在PFO中的浓度,我们获得了具有放大自发发射的白光发射,当DCJTB在PFO的掺杂浓度为0.3%时显示了最好的白光ASE特性, 白光中DCJTB和PFO发射的阈值、增益和损耗分别达到了0.072 mJ pulse-1,0.035 mJ pulse-1;36.3 cm-1,22.35 cm-1和7.39 cm-1,15.88 cm-1。我们的结果表明,DCJTB掺杂聚合物PFO体系是实现ASE白光发射的有效方法,拓展了ASE的应用范围。 3、开发出了二维多孔SBA-15和三维TiO2反蛋白石光子晶体两种实现有机ASE有效发射的两种结构,通过利用有序结构的SBA-15的量子限域效应优化了蓝光染料C151的ASE阈值、增益和损耗特性,而通过利用三维TiO2反蛋白石光子晶体的量子限域效应,也使包埋其中的绿光染料C545T的ASE特性得到了明显改善。研究表明,无论是二维SBA-15多孔结构还是三维TiO2反蛋白石光子晶体结构,通过其量子限域效应都能很好地优化包埋其中的荧光染料的ASE特性,为进一步优化有机半导体的ASE特性提供了新的思路。 4、将聚苯乙烯纳米球分散到DCJTB:PS薄膜中和把DCJTB:PS薄膜旋涂在ZnO纳米柱阵列上两种方法,我们已经成功地研制出了多模随机有机激光发射器件。详细研究表明,多模随机有机激光发射特性显著地与聚苯乙烯纳米球的尺寸和浓度以及ZnO纳米柱的疏密程度密切相关,优化后的聚苯乙烯纳米球掺杂DCJTB:PS薄膜的阈值已经达到了0.06 mJ pulse-1cm-2,而ZnO纳米柱包埋DCJTB:PS薄膜的阈值达到了0.375 mJ pulse-1cm-2。我们的结果表明,聚苯乙烯纳米球和ZnO纳米柱都是实现随机有机激光的非常好的散射介质材料。
Resumo:
We studied the memory effect in the devices consisting of dye-doped N, N'-di(naphthalene-1-yl)-N, N'-diphenyl-benzidine sandwiched between indium-tin oxide and Ag electrodes. It was found that the on/off current ratio was greatly improved by the doped fluorescent dyes compared with nondoping devices. A mechanism of charge trapping was demonstrated to explain the improvement of the memory effect. For the off state, the conduction process is dominated by the trapping current, which is a characteristic of the space-charge limited current, whereas the on state is dominated by the detrapping current, and interpreted by Poole-Frenkel emission.
Resumo:
The growth kinetics of an aerial bacterial colony on solid agar media was studied using laser induced fluorescence technique. Fluorescence quenching of Rhodamin B by the bacterial colony was utilized for the study. The lag phase, log phase, and stationary phase of growth curve of bacterial colony was identified by measuring peak fluorescence intensity of dye doped bacterial colony.
Resumo:
International School of Photonics, Cochin University of Science & Technology
Resumo:
The photoacoustic investigations carried out on different photonic materials are presented in this thesis. Photonic materials selected for the investigation are tape cast ceramics, muItilayer dielectric coatings, organic dye doped PVA films and PMMA matrix doped with dye mixtures. The studies are performed by the measurement of photoacoustic signal generated as a result of modulated cw laser irradiation of samples. The gas-microphone scheme is employed for the detection of photoacoustic signal. The different measurements reported here reveal the adaptability and utility of the PA technique for the characterization of photonic materials.Ceramics find applications in the field of microelectronics industry. Tape cast ceramics are the building blocks of many electronic components and certain ceramic tapes are used as thermal barriers. The thermal parameters of these tapes will not be the same as that of thin films of the same materials. Parameters are influenced by the presence of foreign bodies in the matrix and the sample preparation technique. Measurements are done on ceramic tapes of Zirconia, Zirconia-Alumina combination, barium titanate, barium tin titanate, silicon carbide, lead zirconate titanateil'Z'T) and lead magnesium niobate titanate(PMNPT). Various configurations viz. heat reflection geometry and heat transmission geometry of the photoacoustic technique have been used for the evaluation of different thermal parameters of the sample. Heat reflection geometry of the PA cell has been used for the evaluation of thermal effusivity and heat transmission geometry has been made use of in the evaluation of thermal diffusivity. From the thermal diffusivity and thermal effusivity values, thermal conductivity is also calculated. The calculated values are nearly the same as the values reported for pure materials. This shows the feasibility of photoacoustic technique for the thermal characterization of ceramic tapes.Organic dyes find applications as holographic recording medium and as active media for laser operations. Knowledge of the photochemical stability of the material is essential if it has to be used tor any of these applications. Mixing one dye with another can change the properties of the resulting system. Through careful mixing of the dyes in appropriate proportions and incorporating them in polymer matrices, media of required stability can be prepared. Investigations are carried out on Rhodamine 6GRhodamine B mixture doped PMMA samples. Addition of RhB in small amounts is found to stabilize Rh6G against photodegradation and addition of Rh6G into RhB increases the photosensitivity of the latter. The PA technique has been successfully employed for the monitoring of dye mixture doped PMMA sample. The same technique has been used for the monitoring of photodegradation ofa laser dye, cresyl violet doped polyvinyl alcohol also.Another important application of photoacoustic technique is in nondestructive evaluation of layered samples. Depth profiling capability of PA technique has been used for the non-destructive testing of multilayer dielectric films, which are highly reflecting in the wavelength range selected for investigations. Eventhough calculation of thickness of the film is not possible, number of layers present in the system can be found out using PA technique. The phase plot has clear step like discontinuities, the number of which coincides with the number of layers present in the multilayer stack. This shows the sensitivity of PA signal phase to boundaries in a layered structure. This aspect of PA signal can be utilized in non-destructive depth profiling of reflecting samples and for the identification of defects in layered structures.
Resumo:
The thesis presented the fabrication and characterisation of polymer optical fibers in their applications as optical amplifier and smart sensors.Optical polymers such as PMMA are found to be a very good host material due to their ability to incorporate very high concentration of optical gain media like fluorescent dyes and rare earth compounds. High power and high gain optical amplification in organic dye-doped polymer optical fibers is possible due to extremely large emission cross sections of oyes. Dye doped (Rhodamine 6G) optical fibers were fabricated by using indigenously developed polymer optical fiber drawing tower. Loss characterization of drawn dye doped fibers was carried out using side illumination technique. The advantage of the above technique is that it is a nondestructive method and can also be used for studying the uniformity in fiber diameter and doping. Sensitivity of the undoped polymer fibers to temperature and microbending were also studied in its application in smart sensors.Optical amplification studies using the dye doped polymer optical fibers were carried out and found that an amplification of l8dB could be achieved using a very short fiber of length lOcm. Studies were carried out in fibers with different dye concentrations and diameter and it was observed that gain stability was achieved at relatively high dye concentrations irrespective of the fiber diameter.Due to their large diameter, large numerical aperture, flexibility and geometrical versatility of polymer optical fibers it has a wide range of applications in the field of optical sensing. Just as in the case of conventional silica based fiber optic sensors, sensing techniques like evanescent wave, grating and other intensity modulation schemes can also be efficiently utilized in the case of POF based sensors. Since polymer optical fibers have very low Young's modulus when compared to glass fibers, it can be utilized for sensing mechanical stress and strain efficiently in comparison with its counterpart. Fiber optic sensors have proved themselves as efficient and reliable devices to sense various parameters like aging, crack formation, weathering in civil structures. A similar type of study was carried out to find the setting characteristics of cement paste used for constructing civil structures. It was found that the measurements made by using fiber optic sensors are far more superior than that carried out by conventional methods. More over,POF based sensors were found to have more sensitivity as well.
Resumo:
The subject of Photonics is concerned with the generation,control and utilization of photons for performing a variety of tasks.It came to existence as a consequence of the harmonious fusion of optical methods with electronic technology.Wide spread use of laser based methods in electronics is slowly replacing elecrtons with photons in the field of Communication,Control and Computing .Therefore,there is a need to promote the R & D activities in the area of Photonics and to generate well trained manpower in laser related fields.Development and characterization of photonic materials is an important subject of research in the field of Photonics.Optical and thermal characterization of photonic materials using thermal lens technique is a PhD thesis in the field of Photonics in which the author describes how thermal lens effect can be used to characterize themal and optical properties of photonic materials.Plausibility of thermal lens based logic gates is also presented in this thesis.
Resumo:
Optical fiber sensors developed for measuring pH values usually employ an unclad and unstrained section of the fiber. In this paper, we describe the design and fabrication of a microbent fiber optic sensor that can be used for pH sensing. In order to obtain the desired performance, a permanently microbent portion of a plastic optic fiber is coated with a thin film of dye impregnated sol–gel material. The measurements are simultaneously carried out in two independent detection schemes viz., the bright field detection configuration for detecting the core modes and dark field detection configuration, for detecting the cladding modes. The results of measurements of core mode-power and cladding mode-power variation with change in pH of a solution surrounding the coated portion of the fiber is presented. This paper thus demonstrates how a bare plastic fiber can be modified for pH sensing in a simple and cost effective manner.
Resumo:
A sensitive method based on the principle of photothermal phenomena to realize optical logic gates is presented. A dual beam thermal lens method using low power cw lasers in a dye-doped polymer can be very effectively used as an alternate technique to perform the logical function such as NAND, AND and OR.
Resumo:
Observing the wide possibilities of fluorescent dyes, an exhaustive investigation is done in laser dyes mainly focusing on Coumarin 540 which has a very strong emission in the green region. The photophysics of the dye is studied in detail in a good number of solvent environments. The results of the amplified spontaneous emission and lasing behaviour in both dye solution and different polymer solid state matrices and the ptotostability of the these matrices are investigated using the photoacoustic technique and the same are also included in this thesis. The energy transfer behaviour in dye mixtures which could be utilized for laser studies and bio-analysis are also presented. The nonlinear characterization of Coumarin540 forms the last part of the experimental investigations presented in the thesis.
Resumo:
The emergence of lasers in the early sixties has not only revolutionized the field of optics and communication but also paved new ways in the field of material characterization. Material studies using photothermal techniques possess certain unique characteristics and advantages over conventional methods. The most important aspect of photothennal techniques is their ability to perform noncontact and nondestructive measurement. Photoacoustics, photothermal deflection, thermal lens, photothermal radiometry and photopyroelectric methods are some of the commonly used and powerful techniques for the thermal and optical characterization of materials using lasers. In this thesis the applications of photoacoustic and photothermal deflection techniques for the thermal and optical characterization of different photonic materials, namely, semiconductors, liquid crystals and dye-doped polymers are discussed
Resumo:
Light in its physical and philosophical sense has captured the imagination of human mind right from the dawn of civilization. The invention of lasers in the 60’s caused a renaissance in the field of optics. This intense, monochromatic, highly directional radiation created new frontiers in science and technology. The strong oscillating electric field of laser radiation creates a. polarisation response that is nonlinear in character in the medium through which it passes and the medium acts as a new source of optical field with alternate properties. It was in this context, that the field of optoelectronics which encompasses the generation, modulation, transmission etc. of optical radiation has gained tremendous importance. Organic molecules and polymeric systems have emerged as a class of promising materials of optoelectronics because they offer the flexibility, both at the molecular and bulk levels, to optimize the nonlinearity and other suitable properties for device applications. Organic nonlinear optical media, which yield large third-order nonlinearities, have been widely studied to develop optical devices like high speed switches, optical limiters etc. Transparent polymeric materials have found one of their most promising applicationsin lasers, in which they can be used as active elements with suitable laser dyes doped in it. The solid-matrix dye lasers make possible combination of the advantages of solid state lasers with the possibility of tuning the radiation over a broad spectral range. The polymeric matrices impregnated with organic dyes have not yet widely used because of the low resistance of the polymeric matrices to laser damage, their low dye photostability, and low dye stability over longer time of operation and storage. In this thesis we investigate the nonlinear and radiative properties of certain organic materials and doped polymeric matrix and their possible role in device development
Resumo:
Although the main application of optical fibers are in the field of telecommunication, optical fiber based sensors of various designs are becoming valuable devices for wide industrial applications. The advantages of optical fiber-based sensors include high sensitivity, insensitivity to electromagnetic radiation; spark free, light weight and minimal intrusiveness due to their relatively small size and deployment in harsh and hostile environments. It has been proved that POI-7 based sensors can be employed to detect a great variety of parameters including temperature, humidity, pressure, refractive index etc. The proposed thesis presented in six chapters deals with the work carried on dye doped and undoped POF for photonic device applications such as amplifier, laser and sensor
Resumo:
Rhodamine 6G (RH6G) laser dye-doped AlPO(4) xerogel and glass were prepared via a simple sol-gel route by one-step process and two-step process, respectively. The aggregating behavior of dyes in xerogel and glass was studied by excitation and emission spectra. The results indicated the dye aggregates become significantly weak in AlPO(4) glass than in xerogel, which might be attributed to the enhanced interactions between dye and AlPO(4) network as well as the nano-scale separation of dye by the mesoporous structure of AlPO(4) glass. The (27)Al MAS NMR of AlPO(4) glass confirms the interaction of RH6G with AlPO(4) glass network. Incorporation of RH6G into AlPO(4) glass converts Al(4) to Al(6) units, resulting in the increase of Al(6) concentration with the doped RH6G concentration. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)