994 resultados para dielectric-relaxation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transparent glasses in the system 0.5Li(2)O-0.5M(2)O-2B(2)O(3) (M = Li, Na and K) were fabricated via the conventional melt quenching technique. The amorphous and glassy nature of the samples was confirmed via the X-ray powder diffraction and the differential scanning calorimetry, respectively. The frequency and temperature dependent characteristics of the dielectric relaxation and the electrical conductivity were investigated in the 100 Hz-10 MHz frequency range. The imaginary part of the electric modulus spectra was modeled using an approximate solution of Kohrausch-Williams-Watts relation. The stretching exponent, (3, was found to be temperature independent for 0.5Li(2)O-0.5Na(2)O-2B(2)O(3) (LNBO) glasses. The activation energy associated with DC conduction was found to be higher (1.25 eV) for 0.5Li(2)O-0.5K(2)O-2B(2)O(3) (LKBO) glasses than that of the other glass systems under study. This is attributed to the mixed cation effect. (C) 2011 Elsevier By. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Limiting ionic conductance (Lambda(0)) of rigid symmetrical unipositive ions in aqueous solution shows a strong temperature dependence. For example, Lambda(0) more than doubles when the temperature is increased from 283 to 318 K. A marked variation also occurs when the solvent is changed from ordinary water (H2O) to heavy water (D2O). In addition, Lambda(0) shows a nonmonotonic size dependence with a skewed maximum near Cs+. Although these important results have been known for a long time, no satisfactory theoretical explanation exists for these results. In this article we present a simple molecular theory which provides a nearly quantitative explanation in terms of microscopic structure and dynamics of the solvent. A notable feature of this theory is that it does not invoke any nonquantifiable models involving solvent-berg or clatherates. We find the strong temperature dependence of Lambda(0) to arise from a rather large number of microscopic factors, each providing a small but nontrivial contribution, but all acting surprisingly in the same direction. This work, we believe, provides, for the first time, a satisfactory explanation of both the anomalous size and temperature dependencies of Lambda(0) of unipositive ions in molecular terms. The marked change in Lambda(0) as the solvent is changed from H2O to D2O is found to arise partly from a change in the dielectric relaxation and partly from a change in the effective interaction of the ion with the solvent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrical conductivity and dielectric relaxation studies with a wide range of compositions of lithium ion conducting glasses belonging to the ternary glass system Li2SO4-Li2O-B2-O3- have been carried out over the temperature range 150-450 K and between 10 - 10(7) Hz. DC conductivities exhibit two different activation regions. This seems to suggest the presence of a cluster tissue texture in these glasses with weakly ordered clusters of Li2SO4 and lithium berates being held together by a truly amorphous tissue of the same average composition as clusters. AC conductivity behaviour of these glasses has been analysed using both power law and stretched exponential relaxation functions. The variation of the power law exponent s and the stretched exponent beta with temperature seems to be consistent with the presence of a cluster tissue texture in these glasses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A few fixed distance covalently linked porphyrin-quinone molecules have been synthesized in which a benzoquinone is directly attached to a meso/beta-pyrrole position of tri(phenyl/pentafluorophenyl)/tetraphenylporphyrins. The choice of fluoroarylporphyrins permit modulation of Delta G(ET) values for photoinduced electron-transfer reactions in these systems. All short distance porphyrin-quinone molecules showed efficient quenching of the porphyrin singlet excited state. The electrochemical redox data coupled with the steady-state and time-resolved singlet emission data are analysed to evaluate the dependence of Delta G(ET) values on the rate of electron transfer (k(ET)) in these systems. The meso-trifluoroarylporphyrin-quinones are found to be sensitive probes of the surrounding dielectric environment. Varying solvent polarity on the mechanism of fluorescence quenching and k(ET) values revealed that short donor-acceptor distance and the solvent dielectric relaxation properties play a dominant role. (C) 1999 Elsevier Science S.A. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ultrafast solvation dynamics in three nonassociated polar solvents, namely, acetonitrile, dimethyl sulfoxide, and acetone, have been studied by using the molecular hydrodynamic theory. For solvation in acetonitrile, the solvent memory function required for this study has been obtained from recent dielectric relaxation measurements of Venabales and Schuttenmaer; earlier theoretical studies used only the Kerr relaxation data. As the latter provides only an indirect information regarding the polar dynamical response of the dipolar liquid, it fails to provide a fully quantitative description of the solvation time correlation function, S(t). The present study with full dielectric data, on the other hand, gives excellent agreement with the experimental results. The theory shows that the ultrafast part of the solvation dynamics originates almost entirely from the high-frequency component of dielectric relaxation (with time constant 0.177 ps), although the latter represents only a small part of the latter. For DMSO and acetone, however, the present theory predicts a decay slower than the experimental observation. It is proposed that for these two solvents specific chromophore-solvent interactions might be responsible for the-large discrepancy. On the basis of the theory, two experimental studies have also been proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lanthanum doped lead titanate (PLT) thin films were identified as the most potential candidates for the pyroelectric and memory applications. PLT thin films were deposited on Pt coated Si by excimer laser ablation technique. The polarization behavior of PLT thin films has been studied over a temperature range of 300 K to 550 K. A universal power law relation was brought into picture to explain the frequency dependence of ac conductivity. At higher frequency region ac conductivity of PLT thin films become temperature independent. The temperature dependence of ac conductivity and the relaxation time is analyzed in detail. The activation energy obtained from the ac conductivity was attributed to the shallow trap controlled space charge conduction in the bulk of the sample. The impedance analysis for PLT thin films were also performed to get insight of the microscopic parameters, like grain, grain boundary, and film-electrode interface etc. The imaginary component of impedance Z" exhibited different peak maxima at different temperatures. Different types of mechanisms were analyzed in detail to explain the dielectric relaxation behavior in the PLT thin films.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thin films of BaZrO3 (BZ) were grown using a pulsed laser deposition technique on platinum coated silicon substrates. Films showed a polycrystalline perovskite structure upon different annealing procedures of in-situ and ex-situ crystallization. The composition analyses were done using Energy dispersive X-ray analysis (EDAX) and Secondary ion mass spectrometry (SIMS). The SIMS analysis revealed that the ZrO2 formation at the right interface of substrate and the film leads the degradation of the device on the electrical properties in the case of ex-situ crystallized films. But the in-situ films exhibited no interfacial formation. The dielectric properties have been studied for the different temperatures in the frequency regime of 40 Hz to 100kHz. The response of the film to external ac stimuli was studied at different temperatures, and it showed that ac conductivity values in the limiting case are correspond to oxygen vacancy motion. The electrical modulus is fitted to a stretched exponential function and the results clearly indicate the presence of the non-Debye type of dielectric relaxation in these materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fully atomistic molecular dynamics simulations have been carried out to investigate the correlation of biological activity with dynamics of water molecules in an aqueous protein solution of the toxic domain of enterotoxin (PDB ID: 1ETN). This is a small protein of 13 amino acid residues. Our study of this water soluble protein clearly reveals that water dynamics slows down in the hydration layer. Despite this general slowing down, water molecules in the vicinity of the second beta turn of this protein exhibit faster dynamics than those near other regions of the protein. Since this beta turn is believed to play a critical role in the receptor binding of this protein, the faster dynamics of water near the beta turn m ay have biological significance. The collective orientational dynamics of the water molecules in the protein solution exhibits a characteristic long time component of 27 ps, which agrees well with dielectric relaxation experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

K0.5La0.5Bi2Nb2O9, a relaxor, was synthesized and the structural studies confirmed it to be an n = 2 member of the Aurivillius oxides. The ½{h00} and ½{hk0} types of superlattice reflections in the electron diffraction patterns reflected the presence of ordered polar regions. A broad dielectric peak with frequency dependent dielectric maximum temperature was observed. The dielectric relaxation obeyed the Vogel-Fulcher relation wherein Ea = 0.04 eV, Tf = 428 K,and ωo = 1010 Hz. The diffuseness parameter γ = 2.003 established the relaxor nature and it was attributed to the A-site cationic disorder. The piezoelectric d31 coefficient was 0.5 pC/N at 300 K and 2 pC/N at 480 K.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A set of symmetric and asymmetric superlattices with ferromagnetic La0.6Sr0.4MnO3 (LSMO) and ferroelectric 0.7Pb(Mg1/3Nb2/3)O3–0.3(PbTiO3) as the constituting layers was fabricated on LaNiO3 coated (100) oriented LaAlO3 substrates using pulsed laser ablation. The crystallinity, and magnetic and ferroelectric properties were studied for all the superlattices. All the superlattice structures exhibited a ferromagnetic behavior over a wide range of temperatures between 10 and 300 K, whereas only the asymmetric superlattices exhibited a reasonably good ferroelectric behavior. Strong influence of an applied magnetic field was observed on the ferroelectric properties of the asymmetric superlattices. Studies were conducted toward understanding the influence of conducting LSMO layers on the electrical responses of the heterostructures. The absence of ferroelectricity in the symmetric superlattice structures has been attributed to their high leakage characteristics. The effect of an applied magnetic field on the ferroelectric properties of the asymmetric superlattices indicated strong influence of the interfaces on the properties. The dominance of the interface on the dielectric response was confirmed by the observed Maxwell-Wagner-type dielectric relaxation in these heterostructures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polycrystalline Ca0.18Sr0.226Ba0.594Nb2O6 (CSBN18) was synthesized via the solid-state reaction route. X-ray structural studies confirmed it belonged to the tetragonal tungsten bronze family. Rietveld refinement of the X-ray data has been carried out for CSBN18 where the atomic positions and site occupancy factors for A-sites have been determined. The dielectric properties of CSBN18 ceramic were studied as a function of temperature in the 100 Hz - 1 MHz frequency range. The dielectric relaxation followed the Vogel-Fulcher relation wherein E-a = 37.4 meV; T-f = 131.5 degrees C and omega(0) = 4.31 x 10(9) rad s(-1). A high pyroelectric coefficient of similar to 250 mu C m(-2).K was obtained around the transition temperature (similar to 150 degrees C). This is significantly higher than that reported for polycrystalline SrxBa1-xNb2O6 (SBN). However, the piezoelectric coefficient (d(33)) of the title composition was as low as 6 pC N-1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ion conducting glasses in xLiCl-20Li(2)O-(80-x) 0.80P(2)O(5)-0.20MoO(3)] glass system have been prepared over a wide range of composition (X = 5, 10, 15, 20 and 25 mol%). The electrical conductivity and dielectric relaxation of these glasses were analyzed using impedance spectroscopy in the frequency range of 10 Hz-10 MHz and in the temperature range of 313-353 K. D.c. activation energies extracted from Arrhenius plots using regression analysis, decreases with increasing LiCl mol%. A.c. conductivity data has been fitted to both single and double power law equation with both fixed and variable parameters. The increased conductivity in the present glass system has been correlated with the volume increasing effect and the coordination changes that occur due to structural modification resulting in the creation of non-bridging oxygens (NBO's) of the type O-Mo-O- bonds in the glass network. Dielectric relaxation mechanism in these glasses is analyzed using Kohlrausch-Williams-Watts (KWW) stretched exponential function and stretched exponent (beta) is found to be insensitive to temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Crystallization-induced phase separation and segmental relaxations in poly(vinylidene fluoride)/poly(methyl methacrylate) (PVDF/PMMA) blends was systematically investigated by melt-rheology and broadband dielectric spectroscopy in the presence of multiwall carbon nanotubes (MWNTs). Different functionalized MWNTs (amine, -NH2; acid, -COOH) were incorporated in the blends by melt-mixing above the melting temperature of PVDF, where the blends are miscible, and the crystallization induced phase separation was probed in situ by shear rheology. Interestingly, only -NH2 functionalized MWNTs (a-MWNTs) aided in the formation of beta-phase (trans-trans) crystals in PVDF, whereas both the neat blends and the blends with -COOH functionalized MWNTs (c-MWNTs) showed only alpha-phase (trans-gauche-trans-gauche') crystals as inferred from wide-angle X-ray diffraction (WXRD) and Fourier transform infrared (FTIR). Furthermore, blends with only a-MWNTs facilitated in heterogeneous nucleation in the blends manifesting in an increase in the calorimetric crystallization temperature and hence, augmented the theologically determined crystallintion induced phase separation temperature. The dielectric relaxations associated with the crystalline phase of PVDF (alpha(c)) was completely absent in the blends with a-MWNTs in contrast to neat blends and the blends with c-MWNTs in the dielectric loss spectra. The relaxations in the blends investigated here appeared to follow Havriliak-Negami (HN) empirical equations, and, more interestingly, the dynamic heterogeneity in the system could be mapped by an extra relaxation at higher frequency at the crystallization-induced phase separation temperature. The mean relaxation time (tau(HN)) was evaluated and observed to be delayed in the presence of MWNTs in the blends, more prominently in the case of blends with a-MWNTs. The latter also showed a significant increase in the dielectric relaxation strength (Delta epsilon). Electron microscopy and selective etching was used to confirm the localization of MWNTs in the amorphous phases of the interspherulitic regions as observed from scanning electron microscopy (SEM). The evolved crystalline morphology, during crystallization-induced phase separation, was observed to have a strong influence on the charge transport processes in the blends. These observations were further supported by the specific interactions (like dipole induced dipole interaction) between a-MWNTs and PVDF, as inferred from FTIR, and the differences in the crystalline morphology as observed from WXRD and polarized optical microscopy (POM).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Na0.5Bi0.5TiO3 (NBT) and its derivatives have prompted a great surge in interest owing to their potential as lead-free piezoelectrics. In spite of five decades since its discovery, there is still a lack of clarity on crucial issues such as the origin of significant dielectric relaxation at room temperature, structural factors influencing its depoling, and the status of the recently proposed monoclinic (Cc) structure vis-a-vis the nanosized structural heterogeneities. In this work, these issues are resolved by comparative analysis of local and global structures on poled and unpoled NBT specimens using electron, x-ray, and neutron diffraction in conjunction with first-principles calculation, dielectric, ferroelectric, and piezoelectric measurements. The reported global monoclinic (Cc) distortion is shown not to correspond to the thermodynamic equilibrium state at room temperature. The global monocliniclike appearance rather owes its origin to the presence of local structural and strain heterogeneities. Poling removes the structural inhomogeneities and establishes a long-range rhombohedral distortion. In the process the system gets irreversibly transformed from a nonergodic relaxor to a normal ferroelectric state. The thermal depoling is shown to be associated with the onset of incompatible in-phase tilted octahedral regions in the field-stabilized long range rhombohedral distortion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poly(vinylidene fluoride) (PVDF) and poly(methyl methacrylate) (PMMA) are completely miscible below 50 wt % PVDF in the blends. In this work, an attempt was made to understand the fragility/cooperativity relation in glass-forming and crystalline blends of PVDF/PMMA and in the presence of a heteronucleating agent, multiwall carbon nanotubes (CNTs). Hence, three representative blends were chosen: a completely amorphous (10/90 by wt, PVDF/PMMA), on the verge of amorphous miscibility (50/50 by wt, PVDF/PMMA), and crystalline (60/40 by wt, PVDF/PMMA) blends. The intermolecular cooperativity/coupling, fragility, and configurational entropy near the glass transition temperature (T-g) were studied using differential scanning calorimetry (DSC) and broadband dielectric relaxation spectroscopy (DRS). It was observed that the blends with higher concentration of PMMA were more fragile (fragility index m = 141) and those with higher concentration of PVDF were more strong (m = 78). Interestingly, the coupling was less in the glass-forming blends (10/90 by wt, PVDF/PMMA) than the crystalline blends as manifested from DRS. This observation was also supported by DSC measurements which reflected that the cooperative rearranging region (CRR) existed over a smaller length scales in fragile blends as compared to strong blends, possibly due to restricted amorphous mobility. This effect was more prominent in the presence of CNTs, in particular for 50/50 (by wt) and 60/40 (by wt) PVDF/PMMA blends. Further, the configurational entropy, as manifested from DRS, decreased significantly in the strong blends in striking contrast to the fragile blends, supported by DSC, which manifested in an increase in the volume of cooperativity in the strong blends. The higher coupling in the crystalline blends can be attributed to good packing of the amorphous regions. While this is understood for crystalline blends (60/40 by wt, PVDF/PMMA), it is envisaged that enhanced dynamic heterogeneity is accountable for increased coupling in the case of blends which are on the verge of amorphous miscibility (50/50 by wt, PVDF/PMMA). The latter is also supported by broad relaxations near the T-g in DRS. Interestingly, the intermolecular coupling in the blends in the presence of CNTs has reduced, though the potential energy barrier hindering the rearrangement of CRR is lower than the blends without CNTs. In addition, the amorphous packing is not as effective as the blends without CNTs. This is manifested from reduced volume of cooperativity in particular, for 50/50 (by wt) and 60/40 (by wt) blends.