880 resultados para devices of intermittent pneumatic compression
Resumo:
Background In an agreement assay, it is of interest to evaluate the degree of agreement between the different methods (devices, instruments or observers) used to measure the same characteristic. We propose in this study a technical simplification for inference about the total deviation index (TDI) estimate to assess agreement between two devices of normally-distributed measurements and describe its utility to evaluate inter- and intra-rater agreement if more than one reading per subject is available for each device. Methods We propose to estimate the TDI by constructing a probability interval of the difference in paired measurements between devices, and thereafter, we derive a tolerance interval (TI) procedure as a natural way to make inferences about probability limit estimates. We also describe how the proposed method can be used to compute bounds of the coverage probability. Results The approach is illustrated in a real case example where the agreement between two instruments, a handle mercury sphygmomanometer device and an OMRON 711 automatic device, is assessed in a sample of 384 subjects where measures of systolic blood pressure were taken twice by each device. A simulation study procedure is implemented to evaluate and compare the accuracy of the approach to two already established methods, showing that the TI approximation produces accurate empirical confidence levels which are reasonably close to the nominal confidence level. Conclusions The method proposed is straightforward since the TDI estimate is derived directly from a probability interval of a normally-distributed variable in its original scale, without further transformations. Thereafter, a natural way of making inferences about this estimate is to derive the appropriate TI. Constructions of TI based on normal populations are implemented in most standard statistical packages, thus making it simpler for any practitioner to implement our proposal to assess agreement.
Resumo:
The purpose of this thesis was to investigate the compression of filter cakes at high filtration pressures with five different test materials and to compare the energy consumption of high pressure compression with the energy consumption of thermal drying. The secondary target of this study was to investigate the particle deformation of test materials during filtration and compression. Literature part consists of basic theory of filtration and compression and of the basic parameters that influence the filtration process. There is also a brief description about all of the test materials including their properties and their industrial production and processing. Theoretical equations for calculating the energy consumptions of the filtrations at different conditions are also presented. At the beginning of the experiments at experimental part, the basic filtration tests were done with all the five test materials. Filtration tests were made at eight different pressures, from 6 bars up to 100 bars, by using piston press pressure filter. Filtration tests were then repeated by using a cylinder with smaller slurry volume than in the first series of filtration tests. Separate filtration tests were also done for investigating the deformation of solid particles during filtration and for finding the optimal curve for raising the filtration pressure. Energy consumption differences between high pressure filtration and ideal thermal drying process were done partly experimentally and partly by using theoretical calculation equations. By comparing these two water removal methods, the optimal ranges for their use were found considering their energy efficiency. The results of the measurements shows that the filtration rate increased and the moisture content of the filter cakes decreased as the filtration pressure was increased. Also the porosity of the filter cakes mainly decreased when the filtration pressure was increased. Particle deformation during the filtration was observed only with coal particles.
Resumo:
Nineteen-channel EEGs were recorded from the scalp surface of 30 healthy subjects (16 males and 14 females, mean age: 34 years, SD: 11.7 years) at rest and under trains of intermittent photic stimulation (IPS) at rates of 5, 10 and 20 Hz. Digitalized data were submitted to spectral analysis with fast fourier transformation providing the basis for the computation of global field power (GFP). For quantification, GFP values in the frequency ranges of 5, 10 and 20 Hz at rest were divided by the corresponding data obtained under IPS. All subjects showed a photic driving effect at each rate of stimulation. GFP data were normally distributed, whereas ratios from photic driving effect data showed no uniform behavior due to high interindividual variability. Suppression of alpha-power after IPS with 10 Hz was observed in about 70% of the volunteers. In contrast, ratios of alpha-power were unequivocal in all subjects: IPS at 20 Hz always led to a suppression of alpha-power. Dividing alpha-GFP with 20-Hz IPS by alpha-GFP at rest (R = alpha-GFP IPS/alpha-GFPrest) thus resulted in ratios lower than 1. We conclude that ratios from GFP data with 20-Hz IPS may provide a suitable paradigm for further investigations.
Resumo:
The aim of this study was to compare the effect of an intermittent intense aerobic exercise session and a resistance exercise session on blood cell counts and oxidative stress parameters in middle-aged women. Thirty-four women were selected and divided into three groups: RE group (performing 60 min of resistance exercises, N = 12), spinning group (performing 60 min of spinning, N = 12), and control group (not exercising regularly, N = 10). In both exercise groups, lymphocytes and monocytes decreased after 1-h recuperation (post-exercise) compared to immediately after exercise (P < 0.05). Immediately after exercise, in both exercised groups, a significant increase in TBARS (from 16.5 ± 2 to 25 ± 2 for the spinning group and from 18.6 ± 1 to 28.2 ± 3 nmol MDA/mL serum for the RE group) and protein carbonyl (from 1.0 ± 0.3 to 1.6 ± 0.2 for the spinning group and from 0.9 ± 0.2 to 1.5 ± 0.2 nmol/mg protein for the RE group) was observed (P < 0.05). A decrease in antioxidant activities (non-protein sulfhydryl, superoxide dismutase, catalase) was also demonstrated with a negative correlation between damage markers and antioxidant body defenses (P < 0.05). These results indicate that an acute bout of intermittent or anaerobic exercise induces immune suppression and increases the production of reactive oxygen species, causing oxidative stress in middle-aged and trained women. Furthermore, we demonstrated that trained women show improved antioxidant capacity and lower oxidative damage than sedentary ones, demonstrating the benefits of chronic regular physical activity.
Resumo:
The thesis explores the area of still image compression. The image compression techniques can be broadly classified into lossless and lossy compression. The most common lossy compression techniques are based on Transform coding, Vector Quantization and Fractals. Transform coding is the simplest of the above and generally employs reversible transforms like, DCT, DWT, etc. Mapped Real Transform (MRT) is an evolving integer transform, based on real additions alone. The present research work aims at developing new image compression techniques based on MRT. Most of the transform coding techniques employ fixed block size image segmentation, usually 8×8. Hence, a fixed block size transform coding is implemented using MRT and the merits and demerits are analyzed for both 8×8 and 4×4 blocks. The N2 unique MRT coefficients, for each block, are computed using templates. Considering the merits and demerits of fixed block size transform coding techniques, a hybrid form of these techniques is implemented to improve the performance of compression. The performance of the hybrid coder is found to be better compared to the fixed block size coders. Thus, if the block size is made adaptive, the performance can be further improved. In adaptive block size coding, the block size may vary from the size of the image to 2×2. Hence, the computation of MRT using templates is impractical due to memory requirements. So, an adaptive transform coder based on Unique MRT (UMRT), a compact form of MRT, is implemented to get better performance in terms of PSNR and HVS The suitability of MRT in vector quantization of images is then experimented. The UMRT based Classified Vector Quantization (CVQ) is implemented subsequently. The edges in the images are identified and classified by employing a UMRT based criteria. Based on the above experiments, a new technique named “MRT based Adaptive Transform Coder with Classified Vector Quantization (MATC-CVQ)”is developed. Its performance is evaluated and compared against existing techniques. A comparison with standard JPEG & the well-known Shapiro’s Embedded Zero-tree Wavelet (EZW) is done and found that the proposed technique gives better performance for majority of images
Resumo:
Current force feedback, haptic interface devices are generally limited to the display of low frequency, high amplitude spatial data. A typical device consists of a low impedance framework of one or more degrees-of-freedom (dof), allowing a user to explore a pre-defined workspace via an end effector such as a handle, thimble, probe or stylus. The movement of the device is then constrained using high gain positional feedback, thus reducing the apparent dof of the device and conveying the illusion of hard contact to the user. Such devices are, however, limited to a narrow bandwidth of frequencies, typically below 30Hz, and are not well suited to the display of surface properties, such as object texture. This paper details a device to augment an existing force feedback haptic display with a vibrotactile display, thus providing a means of conveying low amplitude, high frequency spatial information of object surface properties. 1. Haptics and Haptic Interfaces Haptics is the study of human touch and interaction with the external environment via touch. Information from the human sense of touch can be classified in to two categories, cutaneous and kinesthetic. Cutaneous information is provided via the mechanoreceptive nerve endings in the glabrous skin of the human hand. It is primarily a means of relaying information regarding small-scale details in the form of skin stretch, compression and vibration.
Resumo:
Aim. Extrinsic compression of the popliteal artery and absence of surrounding anatomical abnormalities characterize the functional popliteal artery entrapment syndrome (PAES). The diagnosis is confirmed to individuals who have typical symptoms of popliteal entrapment and occlusion or important stenosis of the popliteal artery with color duplex sonography (CDS), magnetic resonance imaging (MRI) or arteriography during active plantar flexion-extension maneuvers. However, variable result findings in normal asymptomatic subjects have raised doubts as to the validity of these tests. The purpose of this study was to compare the frequency of popliteal artery compression in 2 groups of asymptomatic subjects, athletes and non-athletes.Methods. Forty-two individuals were studied. Twenty-one subjects were indoor soccer players, and 21 were sedentary individuals. Physical activity was evaluated through questionnaires, anthropometric measurements, and cardiopulmonary exercise test. Evaluation of popliteal artery compression was performed in lower limbs with CDS, ankle-brachial index (ABI) measurements and continuous wave Doppler of the posterior tibial artery.Results. The athletes studied fulfilled the criteria of high level of physical activity whereas sedentary subjects met the criteria of low level of activity. Popliteal artery compression was observed with CDS in 6 (14.2%) studied subjects; 2 of whom (4.7%) were athletes and 4 (9.5%) were non-athletes. This difference was not statistically significant (p=0.21). Doppler of the tibial arteries and ABI measurements gave good specificity and sensibility in the identification of popliteal artery compression.Conclusion. The frequency of popliteal artery compression during maneuvers in normal subjects was 14.2% irrespective of whether or not they performed regular physical activities. Both Doppler and ABI showed good agreement with CDS and should be considered in screening popliteal arteries in individuals suspected of PAES.
Resumo:
The influences of fasting on DEN-initiation and of intermittent fasting (IF) on the rat liver chemical carcinogenesis process were evaluated in a 52-week long assay. Three groups of adult male Wistar rats were used: Groups I to 3 were treated with a single i.p. injection of 200 mg/kg of diethylnitrosamine (DEN). Group 2 was submitted to 48 h fasting prior to DEN treatment. After the 4th week, Group 3 was submitted to IF, established as 48 h weekly fasting during 48 weeks, while Groups I and 2 were fed ad libitum until the 52nd week. All animals were submitted to 70% partial hepatectomy and sacrificed at the 3rd and 52nd weeks, respectively. Fasting prior to DEN-initiation did not influence the development of altered foci of hepatocytes (AFHs) and of hepatic nodules (Group 2 vs. Group G1). IF inhibited the development of preneoplastic lesions, since this dietary regimen decreased the number and the size of glutathione S-transferase (GST-P) positive foci and the number and size of liver nodules (Group G3 vs. Group G1), the inhibitory effect of IF was also reflected in the development of clear and basophilic cell foci. These results indicate that long-term IF regimen exerts an anti-promoting effect on rat hepatocarcinogenesis induced by DEN. (C) 2002 Wiley-Liss, Inc.
Resumo:
OBJECTIVE: The purpose of this study was to evaluate the thickness of the periodontal ligament of rat molars during orthodontic tooth movement (OTM). METHODS: Thirty Wistar rats were divided into three groups of 10 animals each: GI, GII and GIII and the mice were euthanized at 7, 14 and 21 days, respectively. Experimental subjects were compared to their respective controls by the Mann-Whitney test. Comparison of values between compression and tension sides were performed during the same and different time periods through Analysis of Variance (ANOVA), Kruskal-Wallis test and, subsequently, Tukey's test. RESULTS: Groups GI and GII showed decreased PDL size in the apical regions of the mesiobuccal root and in the cervical region of the distobuccal root. There was also an increased PDL in the cervical regions of the mesiobuccal root, apical region of the distobuccal root and middle region of both roots. CONCLUSION: The reduction and increase in PDL size were seen in the same root, which characterizes tooth inclination. The apical, middle and cervical regions were compared with one another in each time period and at three times: 7, 14 and 21 days. They were also compared in each region, confirming a tipping movement in GI and GII and a gradual decreased intensity between GI to GII, reaching normal dimension in GIII.
Resumo:
The aims of this study were (a) to assess the ability of the rating of perceived exertion (RPE) to predict performance (i.e. number of vertical jumps performed to a fixed jump height) of an intermittent vertical jump exercise, and (b) to determine the ability of RPE to describe the physiological demand of such exercise. Eight healthy men performed intermittent vertical jumps with rest periods of 4, 5, and 6s until fatigue. Heart rate and RPE were recorded every five jumps throughout the sessions. The number of vertical jumps performed was also recorded. Random coefficient growth curve analysis identified relationships between the number of vertical jumps and both RPE and heart rate for which there were similar slopes. In addition, there were no differences between individual slopes and the mean slope for either RPE or heart rate. Moreover, RPE and number of jumps were highly correlated throughout all sessions (r=0.97-0.99; P0.001), as were RPE and heart rate (r=0.93-0.97; P0.001). The findings suggest that RPE can both predict the performance of intermittent vertical jump exercise and describe the physiological demands of such exercise.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of the present article is to assess and compare the performance of electricity generation systems integrated with downdraft biomass gasifiers for distributed power generation. A model for estimating the electric power generation of internal combustion engines and gas turbines powered by syngas was developed. First, the model determines the syngas composition and the lower heating value; and second, these data are used to evaluate power generation in Otto, Diesel, and Brayton cycles. Four synthesis gas compositions were tested for gasification with: air; pure oxygen; 60% oxygen with 40% steam; and 60% air with 40% steam. The results show a maximum power ratio of 0.567 kWh/Nm(3) for the gas turbine system, 0.647 kWh/Nm(3) for the compression ignition engine, and 0.775 kWh/Nm(3) for the spark-ignition engine while running on synthesis gas which was produced using pure oxygen as gasification agent. When these three systems run on synthesis gas produced using atmospheric air as gasification agent, the maximum power ratios were 0.274 kWh/Nm(3) for the gas turbine system, 0.302 kWh/Nm(3) for CIE, and 0.282 kWh/Nm(3) for SIE. The relationship between power output and synthesis gas flow variations is presented as is the dependence of efficiency on compression ratios. Since the maximum attainable power ratio of CIE is higher than that of SIE for gasification with air, more research should be performed on utilization of synthesis gas in CIE. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this thesis is the power transient analysis concerning experimental devices placed within the reflector of Jules Horowitz Reactor (JHR). Since JHR material testing facility is designed to achieve 100 MW core thermal power, a large reflector hosts fissile material samples that are irradiated up to total relevant power of 3 MW. MADISON devices are expected to attain 130 kW, conversely ADELINE nominal power is of some 60 kW. In addition, MOLFI test samples are envisaged to reach 360 kW for what concerns LEU configuration and up to 650 kW according to HEU frame. Safety issues concern shutdown transients and need particular verifications about thermal power decreasing of these fissile samples with respect to core kinetics, as far as single device reactivity determination is concerned. Calculation model is conceived and applied in order to properly account for different nuclear heating processes and relative time-dependent features of device transients. An innovative methodology is carried out since flux shape modification during control rod insertions is investigated regarding the impact on device power through core-reflector coupling coefficients. In fact, previous methods considering only nominal core-reflector parameters are then improved. Moreover, delayed emissions effect is evaluated about spatial impact on devices of a diffuse in-core delayed neutron source. Delayed gammas transport related to fission products concentration is taken into account through evolution calculations of different fuel compositions in equilibrium cycle. Provided accurate device reactivity control, power transients are then computed for every sample according to envisaged shutdown procedures. Results obtained in this study are aimed at design feedback and reactor management optimization by JHR project team. Moreover, Safety Report is intended to utilize present analysis for improved device characterization.
Resumo:
OBJECTIVE: The effects of mechanical deformation of intact cartilage tissue on chondrocyte biosynthesis in situ have been well documented, but the mechanotransduction pathways that regulate such phenomena have not been elucidated completely. The goal of this study was to examine the effects of tissue deformation on the morphology of a range of intracellular organelles which play a major role in cell biosynthesis and metabolism. DESIGN: Using chemical fixation, high pressure freezing, and electron microscopy, we imaged chondrocytes within mechanically compressed cartilage explants at high magnification and quantitatively and qualitatively assessed changes in organelle volume and shape caused by graded levels of loading. RESULTS: Compression of the tissue caused a concomitant reduction in the volume of the extracellular matrix (ECM), chondrocyte, nucleus, rough endoplasmic reticulum, and mitochondria. Interestingly, however, the Golgi apparatus was able to resist loss of intraorganelle water and retain a portion of its volume relative to the remainder of the cell. These combined results suggest that a balance between intracellular mechanical and osmotic gradients govern the changes in shape and volume of the organelles as the tissue is compressed. CONCLUSIONS: Our results lead to the interpretive hypothesis that organelle volume changes appear to be driven mainly by osmotic interactions while shape changes are mediated by structural factors, such as cytoskeletal interactions that may be linked to extracellular matrix deformations. The observed volume and shape changes of the chondrocyte organelles and the differential behavior between organelles during tissue compression provide evidence for an important mechanotransduction pathway linking translational and post-translational events (e.g., elongation and sulfation of glycosaminoglycans (GAGs) in the Golgi) to cell deformation.