273 resultados para descriptor
Resumo:
BACKGROUND: Transcranial Doppler (TCD) pulsatility index (PI) has traditionally been interpreted as a descriptor of distal cerebrovascular resistance (CVR). We sought to evaluate the relationship between PI and CVR in situations, where CVR increases (mild hypocapnia) and decreases (plateau waves of intracranial pressure-ICP). METHODS: Recordings from patients with head-injury undergoing monitoring of arterial blood pressure (ABP), ICP, cerebral perfusion pressure (CPP), and TCD assessed cerebral blood flow velocities (FV) were analyzed. The Gosling pulsatility index (PI) was compared between baseline and ICP plateau waves (n = 20 patients) or short term (30-60 min) hypocapnia (n = 31). In addition, a modeling study was conducted with the "spectral" PI (calculated using fundamental harmonic of FV) resulting in a theoretical formula expressing the dependence of PI on balance of cerebrovascular impedances. RESULTS: PI increased significantly (p < 0.001) while CVR decreased (p < 0.001) during plateau waves. During hypocapnia PI and CVR increased (p < 0.001). The modeling formula explained more than 65% of the variability of Gosling PI and 90% of the variability of the "spectral" PI (R = 0.81 and R = 0.95, respectively). CONCLUSION: TCD pulsatility index can be easily and quickly assessed but is usually misinterpreted as a descriptor of CVR. The mathematical model presents a complex relationship between PI and multiple haemodynamic variables.
Resumo:
Résumé La diminution de la biodiversité, à toutes les échelles spatiales et sur l'ensemble de la planète, compte parmi les problèmes les plus préoccupants de notre époque. En terme de conservation, il est aujourd'hui primordial de mieux comprendre les mécanismes qui créent et maintiennent la biodiversité dans les écosystèmes naturels ou anthropiques. La présente étude a pour principal objectif d'améliorer notre compréhension des patrons de biodiversité végétale et des mécanismes sous jacents, dans un écosystème complexe, riche en espèces et à forte valeur patrimoniale, les pâturages boisés jurassiens. Structure et échelle spatiales sont progressivement reconnues comme des dimensions incontournables dans l'étude des patrons de biodiversité. De plus, ces deux éléments jouent un rôle central dans plusieurs théories écologiques. Toutefois, peu d'hypothèses issues de simulations ou d'études théoriques concernant le lien entre structure spatiale du paysage et biodiversité ont été testées de façon empirique. De même, l'influence des différentes composantes de l'échelle spatiale sur les patrons de biodiversité est méconnue. Cette étude vise donc à tester quelques-unes de ces hypothèses et à explorer les patrons spatiaux de biodiversité dans un contexte multi-échelle, pour différentes mesures de biodiversité (richesse et composition en espèces) à l'aide de données de terrain. Ces données ont été collectées selon un plan d'échantillonnage hiérarchique. Dans un premier temps, nous avons testé l'hypothèse élémentaire selon laquelle la richesse spécifique (le nombre d'espèces sur une surface donnée) est liée à l'hétérogénéité environnementale quelque soit l'échelle. Nous avons décomposé l'hétérogénéité environnementale en deux parties, la variabilité des conditions environnementales et sa configuration spatiale. Nous avons montré que, en général, la richesse spécifique augmentait avec l'hétérogénéité de l'environnement : elle augmentait avec le nombre de types d'habitats et diminuait avec l'agrégation spatiale de ces habitats. Ces effets ont été observés à toutes les échelles mais leur nature variait en fonction de l'échelle, suggérant une modification des mécanismes. Dans un deuxième temps, la structure spatiale de la composition en espèces a été décomposée en relation avec 20 variables environnementales et 11 traits d'espèces. Nous avons utilisé la technique de partition de la variation et un descripteur spatial, récemment développé, donnant accès à une large gamme d'échelles spatiales. Nos résultats ont montré que la structure spatiale de la composition en espèces végétales était principalement liée à la topographie, aux échelles les plus grossières, et à la disponibilité en lumière, aux échelles les plus fines. La fraction non-environnementale de la variation spatiale de la composition spécifique avait une relation complexe avec plusieurs traits d'espèces suggérant un lien avec des processus biologiques tels que la dispersion, dépendant de l'échelle spatiale. Dans un dernier temps, nous avons testé, à plusieurs échelles spatiales, les relations entre trois composantes de la biodiversité : la richesse spécifique totale d'un échantillon (diversité gamma), la richesse spécifique moyenne (diversité alpha), mesurée sur des sous-échantillons, et les différences de composition spécifique entre les sous-échantillons (diversité beta). Les relations deux à deux entre les diversités alpha, beta et gamma ne suivaient pas les relations attendues, tout du moins à certaines échelles spatiales. Plusieurs de ces relations étaient fortement dépendantes de l'échelle. Nos résultats ont mis en évidence l'importance du rapport d'échelle (rapport entre la taille de l'échantillon et du sous-échantillon) lors de l'étude des patrons spatiaux de biodiversité. Ainsi, cette étude offre un nouvel aperçu des patrons spatiaux de biodiversité végétale et des mécanismes potentiels permettant la coexistence des espèces. Nos résultats suggèrent que les patrons de biodiversité ne peuvent être expliqués par une seule théorie, mais plutôt par une combinaison de théories. Ils ont également mis en évidence le rôle essentiel joué par la structure spatiale dans la détermination de la biodiversité, quelque soit le composant de la biodiversité considéré. Enfin, cette étude souligne l'importance de prendre en compte plusieurs échelles spatiales et différents constituants de l'échelle spatiale pour toute étude relative à la diversité spécifique. Abstract The world-wide loss of biodiversity at all scales has become a matter of urgent concern, and improving our understanding of local drivers of biodiversity in natural and anthropogenic ecosystems is now crucial for conservation. The main objective of this study was to further our comprehension of the driving forces controlling biodiversity patterns in a complex and diverse ecosystem of high conservation value, wooded pastures. Spatial pattern and scale are central to several ecological theories, and it is increasingly recognized that they must be taken -into consideration when studying biodiversity patterns. However, few hypotheses developed from simulations or theoretical studies have been tested using field data, and the evolution of biodiversity patterns with different scale components remains largely unknown. We test several such hypotheses and explore spatial patterns of biodiversity in a multi-scale context and using different measures of biodiversity (species richness and composition), with field data. Data were collected using a hierarchical sampling design. We first tested the simple hypothesis that species richness, the number of species in a given area, is related to environmental heterogeneity at all scales. We decomposed environmental heterogeneity into two parts: the variability of environmental conditions and its spatial configuration. We showed that species richness generally increased with environmental heterogeneity: species richness increased with increasing number of habitat types and with decreasing spatial aggregation of those habitats. Effects occurred at all scales but the nature of the effect changed with scale, suggesting a change in underlying mechanisms. We then decomposed the spatial structure of species composition in relation to environmental variables and species traits using variation partitioning and a recently developed spatial descriptor, allowing us to capture a wide range of spatial scales. We showed that the spatial structure of plant species composition was related to topography at the coarsest scales and insolation at finer scales. The non-environmental fraction of the spatial variation in species composition had a complex relationship with several species traits, suggesting a scale-dependent link to biological processes, particularly dispersal. Finally, we tested, at different spatial scales, the relationships between different components of biodiversity: total sample species richness (gamma diversity), mean species .richness (alpha diversity), measured in nested subsamples, and differences in species composition between subsamples (beta diversity). The pairwise relationships between alpha, beta and gamma diversity did not follow the expected patterns, at least at certain scales. Our result indicated a strong scale-dependency of several relationships, and highlighted the importance of the scale ratio when studying biodiversity patterns. Thus, our results bring new insights on the spatial patterns of biodiversity and the possible mechanisms allowing species coexistence. They suggest that biodiversity patterns cannot be explained by any single theory proposed in the literature, but a combination of theories is sufficient. Spatial structure plays a crucial role for all components of biodiversity. Results emphasize the importance of considering multiple spatial scales and multiple scale components when studying species diversity.
Resumo:
This paper proposes an automatic hand detection system that combines the Fourier-Mellin Transform along with other computer vision techniques to achieve hand detection in cluttered scene color images. The proposed system uses the Fourier-Mellin Transform as an invariant feature extractor to perform RST invariant hand detection. In a first stage of the system a simple non-adaptive skin color-based image segmentation and an interest point detector based on corners are used in order to identify regions of interest that contains possible matches. A sliding window algorithm is then used to scan the image at different scales performing the FMT calculations only in the previously detected regions of interest and comparing the extracted FM descriptor of the windows with a hand descriptors database obtained from a train image set. The results of the performed experiments suggest the use of Fourier-Mellin invariant features as a promising approach for automatic hand detection.
Resumo:
This paper proposes an automatic hand detection system that combines the Fourier-Mellin Transform along with other computer vision techniques to achieve hand detection in cluttered scene color images. The proposed system uses the Fourier-Mellin Transform as an invariant feature extractor to perform RST invariant hand detection. In a first stage of the system a simple non-adaptive skin color-based image segmentation and an interest point detector based on corners are used in order to identify regions of interest that contains possible matches. A sliding window algorithm is then used to scan the image at different scales performing the FMT calculations only in the previously detected regions of interest and comparing the extracted FM descriptor of the windows with a hand descriptors database obtained from a train image set. The results of the performed experiments suggest the use of Fourier-Mellin invariant features as a promising approach for automatic hand detection.
Resumo:
Toni Prieto, Técnico IC del Servicio de Bibliotecas y Documentación (SBD) de la UPC, en su presentación 'Experiencias de interoperabilidad entre CRIS y repositorios en Catalunya', describió la integración del repositorio UPCommons y del CRIS DRAC (Descriptor de la Recerca i l'Activitat Acadèmica) de la UPC. El resultado de esta integración es un esquema integrado de archivo CRIS/IR en dos fases, envío y revisión, en el que los metadatos se introducen en DRAC -para posteriormente ser transferidos, validados y enriquecidos si procede- y el archivo de texto completo asociado se realiza en UPCommons. De manera similar funciona la integración de GIR (Gestió Integral de la Recerca, basado en Universitas XXI Investigación) y el repositorio O2 en la UOC, permitiendo la asignación del identificador handle de un ítem en O2 a una referencia en GIR. Ambos sistemas, DRAC en la UPC y GIR en la UOC, están integrados en el Proyecto CVN de generación de CVs normalizados. Se mencionaron asimismo experiencias posteriores de integración CRIS/IR actualmente en curso en la Universitat de Barcelona y en la U Pompeu Fabra, y se mostró el impacto significativo de la estrategia de integración de sistemas sobre el ritmo de incorporación de contenidos a UPCommons.
Resumo:
Airborne particles can come from a variety of sources and contain variable chemical constituents. Some particles are formed by natural processes, such as volcanoes, erosion, sea spray, and forest fires, while other are formed by anthropogenic processes, such as industrial- and motor vehicle-related combustion, road-related wear, and mining. In general, larger particles (those greater than 2.5 μm) are formed by mechanical processes, while those less than 2.5 μm are formed by combustion processes. The chemical composition of particles is highly influenced by the source: for combustion-related particles, factors such as temperature of combustion, fuel type, and presence of oxygen or other gases can also have a large impact on PM composition. These differences can often be observed at a regional level, such as the greater sulphate-composition of PM in regions that burn coal for electricity production (which contains sulphur) versus regions that do not. Most countries maintain air monitoring networks, and studies based on the resulting data are the most common basis for epidemiology studies on the health effects of PM. Data from these monitoring stations can be used to evaluate the relationship between community-level exposure to ambient particles and health outcomes (i.e., morbidity or mortality from various causes). Respiratory and cardiovascular outcomes are the most commonly assessed, although studies have also considered other related specific outcomes such as diabetes and congenital heart disease. The data on particle characteristics is usually not very detailed and most often includes some combination of PM2.5, PM10, sulphate, and NO2. Other descriptors that are less commonly found include particle number (ultrafine particles), metal components of PM, local traffic intensity, and EC/OC. Measures of association are usually reported per 10 μg/m3 or interquartile range increase in pollutant concentration. As the exposure data are taken from regional monitoring stations, the measurements are not representative of an individual's exposure. Particle size is an important descriptor for understanding where in the human respiratory system the particles will deposit: as a general rule, smaller particles penetrate to deeper regions of the lungs. Initial studies on the health effects of particulate matter focused on mass of the particles, including either all particles (often termed total suspended particulate or TSP) or PM10 (all particles with an aerodynamic diameter less than 10 μm). More recently, studies have considered both PM10 and PM2.5, with the latter corresponding more directly to combustion-related processes. UFPs are a dominant source of particles in terms of PNC, yet are negligible in terms of mass. Very few epidemiology studies have measured the effect of UFPs on health; however, the numbers of studies on this topic are increasing. In addition to size, chemical composition is of importance when understanding the toxicity of particles. Some studies consider the composition of particles in addition to mass; however this is not common, in part due the cost and labour involved in such analyses.
Resumo:
The objective of this work was to select the most informative morphoagronomic descriptors for cassava (Manihot esculenta) germplasm and to evaluate the ability of different methods to select the descriptors. Ninety-five accessions were characterized using 51 morphoagronomic descriptors. Data were subjected to a multiple correspondence analysis (MCA), whose information was used in the following four methods of descriptor selection: reverse order of the descriptor for the pth factorial axis of the MCA (Jolliffe); sequential, multiple correspondence analysis (SMCA); mean of the contribution orders of the descriptor in the first three factorial axes (C3PA); and C3PA method weighted by the respective eigenvalues of the full analysis (C3PAWeig). The correlations between the dissimilarity matrix with all descriptors and the most informative descriptors were high and significant (0.75, 0.77, 0.83, and 0.84 for C3PAWeig, C3PA, SMCA, and Jolliffe, respectively). The less informative descriptors were discarded, considering those common among the selection methods and relevant for the breeding interests. Therefore, 32 morphoagronomic descriptors with correlation between the dissimilarity matrices (r=0.81) were selected, due to their high capacity to discriminate cassava germplasm and to their ability to maintain some preliminary agronomic traits, useful for the initial characterization of the germplasm.
Resumo:
This thesis is about detection of local image features. The research topic belongs to the wider area of object detection, which is a machine vision and pattern recognition problem where an object must be detected (located) in an image. State-of-the-art object detection methods often divide the problem into separate interest point detection and local image description steps, but in this thesis a different technique is used, leading to higher quality image features which enable more precise localization. Instead of using interest point detection the landmark positions are marked manually. Therefore, the quality of the image features is not limited by the interest point detection phase and the learning of image features is simplified. The approach combines both interest point detection and local description into one phase for detection. Computational efficiency of the descriptor is therefore important, leaving out many of the commonly used descriptors as unsuitably heavy. Multiresolution Gabor features has been the main descriptor in this thesis and improving their efficiency is a significant part. Actual image features are formed from descriptors by using a classifierwhich can then recognize similar looking patches in new images. The main classifier is based on Gaussian mixture models. Classifiers are used in one-class classifier configuration where there are only positive training samples without explicit background class. The local image feature detection method has been tested with two freely available face detection databases and a proprietary license plate database. The localization performance was very good in these experiments. Other applications applying the same under-lying techniques are also presented, including object categorization and fault detection.
Resumo:
Understanding molecular recognition is one major requirement for drug discovery and design. Physicochemical and shape complementarity between two binding partners is the driving force during complex formation. In this study, the impact of shape within this process is analyzed. Protein binding pockets and co-crystallized ligands are represented by normalized principal moments of inertia ratios (NPRs). The corresponding descriptor space is triangular, with its corners occupied by spherical, discoid, and elongated shapes. An analysis of a selected set of sc-PDB complexes suggests that pockets and bound ligands avoid spherical shapes, which are, however, prevalent in small unoccupied pockets. Furthermore, a direct shape comparison confirms previous studies that on average only one third of a pocket is filled by its bound ligand, supplemented by a 50 % subpocket coverage. In this study, we found that shape complementary is expressed by low pairwise shape distances in NPR space, short distances between the centers-of-mass, and small deviations in the angle between the first principal ellipsoid axes. Furthermore, it is assessed how different binding pocket parameters are related to bioactivity and binding efficiency of the co-crystallized ligand. In addition, the performance of different shape and size parameters of pockets and ligands is evaluated in a virtual screening scenario performed on four representative targets.
Resumo:
In this paper the authors propose a new closed contour descriptor that could be seen as a Feature Extractor of closed contours based on the Discrete Hartley Transform (DHT), its main characteristic is that uses only half of the coefficients required by Elliptical Fourier Descriptors (EFD) to obtain a contour approximation with similar error measure. The proposed closed contour descriptor provides an excellent capability of information compression useful for a great number of AI applications. Moreover it can provide scale, position and rotation invariance, and last but not least it has the advantage that both the parameterization and the reconstructed shape from the compressed set can be computed very efficiently by the fast Discrete Hartley Transform (DHT) algorithm. This Feature Extractor could be useful when the application claims for reversible features and when the user needs and easy measure of the quality for a given level of compression, scalable from low to very high quality.
Resumo:
Recent years have produced great advances in the instrumentation technology. The amount of available data has been increasing due to the simplicity, speed and accuracy of current spectroscopic instruments. Most of these data are, however, meaningless without a proper analysis. This has been one of the reasons for the overgrowing success of multivariate handling of such data. Industrial data is commonly not designed data; in other words, there is no exact experimental design, but rather the data have been collected as a routine procedure during an industrial process. This makes certain demands on the multivariate modeling, as the selection of samples and variables can have an enormous effect. Common approaches in the modeling of industrial data are PCA (principal component analysis) and PLS (projection to latent structures or partial least squares) but there are also other methods that should be considered. The more advanced methods include multi block modeling and nonlinear modeling. In this thesis it is shown that the results of data analysis vary according to the modeling approach used, thus making the selection of the modeling approach dependent on the purpose of the model. If the model is intended to provide accurate predictions, the approach should be different than in the case where the purpose of modeling is mostly to obtain information about the variables and the process. For industrial applicability it is essential that the methods are robust and sufficiently simple to apply. In this way the methods and the results can be compared and an approach selected that is suitable for the intended purpose. Differences in data analysis methods are compared with data from different fields of industry in this thesis. In the first two papers, the multi block method is considered for data originating from the oil and fertilizer industries. The results are compared to those from PLS and priority PLS. The third paper considers applicability of multivariate models to process control for a reactive crystallization process. In the fourth paper, nonlinear modeling is examined with a data set from the oil industry. The response has a nonlinear relation to the descriptor matrix, and the results are compared between linear modeling, polynomial PLS and nonlinear modeling using nonlinear score vectors.
Resumo:
Azole derivatives are the main therapeutical resource against Candida albicans infection in immunocompromised patients. Nevertheless, the widespread use of azoles has led to reduced effectiveness and selection of resistant strains. In order to guide the development of novel antifungal drugs, 2D-QSAR models based on topological descriptors or molecular fragments were developed for a dataset of 74 molecules. The optimal fragment-based model (r² = 0.88, q² = 0.73 and r²pred = 0.62 with 6PCs) and descriptor-based model (r² = 0.82, q² = 0.79 and r²pred = 0.70 with 2 PCs), when analysed synergically, suggested that the triazolone ring and lipophilic properties are both important to antifungal activity.
Resumo:
Density functional theory was used to investigate the global and local reactivity of some cis-platinum(II) complexes including anticancer drugs, such as cisplatin and carboplatin. Calculated equilibrium geometries at mPW1PW/LANL2DZ* are in close agreement with their available X-ray data. We develop three new local reactivity descriptors: atomic descriptor of philicity, atomic descriptor group and atomic descriptor of philicity group for determining chemical reactivity and selectivity of the studied complexes. This contribution on chemical reactivity allow us to establish qualitative trends, which enable our descriptors for use in rational platinum based anticancer drug design.
Resumo:
The quantitative structure property relationship (QSPR) for the boiling point (Tb) of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) was investigated. The molecular distance-edge vector (MDEV) index was used as the structural descriptor. The quantitative relationship between the MDEV index and Tb was modeled by using multivariate linear regression (MLR) and artificial neural network (ANN), respectively. Leave-one-out cross validation and external validation were carried out to assess the prediction performance of the models developed. For the MLR method, the prediction root mean square relative error (RMSRE) of leave-one-out cross validation and external validation was 1.77 and 1.23, respectively. For the ANN method, the prediction RMSRE of leave-one-out cross validation and external validation was 1.65 and 1.16, respectively. A quantitative relationship between the MDEV index and Tb of PCDD/Fs was demonstrated. Both MLR and ANN are practicable for modeling this relationship. The MLR model and ANN model developed can be used to predict the Tb of PCDD/Fs. Thus, the Tb of each PCDD/F was predicted by the developed models.
Resumo:
We used conceptual DFT to study global and local reactivity of both nonfunctionalized and functionalized activated carbons, with groups -OH,-CHO, -NH2, -COOH, and -CONH2. Electron-withdrawing groups were observed to increase the reactive surface, while electro-donating groups increase stability as reactivity of the activated carbon decreases. Descriptor groups were used to study the reactivity of structural fragments of activated carbons. The electrophilic and nucleophilic sites indicate that the carbon surface has an amphiphilic behavior that allows it to be used as an adsorbent material for a variety of molecules.