990 resultados para demonstration
Resumo:
Multiwavelength pulses were generated using a monolithically integrated device. The device used is an integrated InGaAs/InGaAsP/InP multi-wavelength laser fabricated by selective area regrowth. The device self pulsated on all of the four wavelength channels. 48 ps pulses were obtained which were measured by a 50GHz oscilloscope and 32GHz photodiode which was not bandwidth limited. Simultaneous multi-wavelength pulse generation was also achieved.
Resumo:
An all-optical polarization rotation technique was demonstrated for demultiplexing a 40 Gb/s return-to-zero optical time division de/multiplexing (OTDM) signal. A sensitivity penalty of 3.5 dB was achieved for the total multiplexing/demultiplexing process from 10Gb/s to 40 Gb/s and back again.
Resumo:
Cambridge Flow Solutions Ltd, Compass House, Vision Park, Cambridge, CB4 9AD, UK Real-world simulation challenges are getting bigger: virtual aero-engines with multistage blade rows coupled with their secondary air systems & with fully featured geometry; environmental flows at meta-scales over resolved cities; synthetic battlefields. It is clear that the future of simulation is scalable, end-to-end parallelism. To address these challenges we have reported in a sequence of papers a series of inherently parallel building blocks based on the integration of a Level Set based geometry kernel with an octree-based cut-Cartesian mesh generator, RANS flow solver, post-processing and geometry management & editing. The cut-cells which characterize the approach are eliminated by exporting a body-conformal mesh driven by the underpinning Level Set and managed by mesh quality optimization algorithms; this permits third party flow solvers to be deployed. This paper continues this sequence by reporting & demonstrating two main novelties: variable depth volume mesh refinement enabling variable surface mesh refinement and a radical rework of the mesh generation into a bottom-up system based on Space Filling Curves. Also reported are the associated extensions to body-conformal mesh export. Everything is implemented in a scalable, parallel manner. As a practical demonstration, meshes of guaranteed quality are generated for a fully resolved, generic aircraft carrier geometry, a cooled disc brake assembly and a B747 in landing configuration. Copyright © 2009 by W.N.Dawes.
Resumo:
BFRI evolved some selected aquaculture technologies viz. polyculture of carps in perennial ponds, monoculture of short cycled fish species (BFRI super strain) in seasonal ponds and prawn seed production through backyard hatchery system have been demonstrated under Farming System Research (FSR) component in Jessore and Santahar regions. Both polyculture of carps and monoculture of short cycled fish species technologies were tested in farmer's ponds in Kaium Kula village near Jessore town. In polyculture trials, seven species comprising of silver carp (Hypophthalmichthys molirrix), catla (Catla catla), rohu (Labeo rohita), grass carp (Ctenopharyngodon idellus), common carp (Cyprinus carpio), mrigal (Cirrhinus cirrhosus) and silver barb (Barbonymus gonionotus) were stocked @ 9,500 (ratio 6:2:4:2:1:5:5); 10,750 (ratio 6:2:4:2:1:5:5) and 12,000 (ratio 6:2:4:2:1:5:4) fish/ha respectively in ponds of T1, T2 and T3 having three replications of each. The mean highest fish production was 3,148 kg/ha in T3, followed by 2,899 kg/ha in T1 and 2,875 kg/ha in T2. Production of T3 was significantly different (P<0.05) than both T1 and T2, while there was no significant differences (P>0.05) between the production of T1 and T2. In case of trial of short cycled fish species, two treatments were tested: T1 (comprising of BFRI super strain of Nile tilapia, silver carp, common carp and silver barb; ratio 3:5:1:1) and T2 (having only BFRI super strain of Nile tilapia). Stocking density in both the treatments were same (20,000 fish/ha). In this trial average production was higher in T1 (2,743 kg/ha) than that of T2 (2,369 kg/ha) but the production figure in these two treatments was not significantly different (P>0.05). Demonstration of backyard prawn hatchery technology was tested at Santahar region of Bogra district, North-west part of Bangladesh. This hatchery consisted of three main components i) bio-filter, ii) rearing tank unit (chari) and iii) air blower/air pump unit. Plastic drum of 200-250 l capacity and cemented chari of 200-250 l capacity were used as bio-filter and larval rearing containers respectively. A 0.5 hp air blower with 6 aquarium air pump were used to operate the aeration system in the hatchery. Diluted sea water (10-12 ppt) made from brine solution (200-250 ppt) collected from salt-bed was used in the backyard hatchery system of hatching of eggs and rearing of larvae. Rearing of first stage zoea-larvae was reared in three rearing tanks following the stocking densities of 40, 50 and 60/l of water respectively. Production of post-larvae were 20±0.82, 22±1.12 and 28±1.63/liter of water in treatments I, II and III respectively in 38, 40 and 39 days rearing period.
Resumo:
A group of 28 fisherwomen who attended demonstration on three subjects, namely, preparation of fish wafers, fish pickles and fish soup powder showed significant knowledge and skill gain for all the three messages. The total knowledge and skill gain was maximum for preparation of fish wafers followed by that for preparation of fish soup powder and fish pickles.
Resumo:
Amplitude and phase velocity measurements on the laminar oscillatory viscous boundary layer produced by acoustic waves are presented. The measurements were carried out in acoustic standing waves in air with frequencies of 68.5 and 114.5 Hz using laser Doppler anemometry and particle image velocimetry. The results obtained by these two techniques are in good agreement with the predictions made by the Rayleigh viscous boundary layer theory and confirm the existence of a local maximum of the velocity amplitude and its expected location.
Resumo:
The fastest ever 11.25Gb/s real-time FPGA-based optical orthogonal frequency division multiplexing (OOFDM) transceivers utilizing 64-QAM encoding/decoding and significantly improved variable power loading are experimentally demonstrated, for the first time, incorporating advanced functionalities of on-line performance monitoring, live system parameter optimization and channel estimation. Real-time end-to-end transmission of an 11.25Gb/s 64-QAM-encoded OOFDM signal with a high electrical spectral efficiency of 5.625bit/s/Hz over 25km of standard and MetroCor single-mode fibres is successfully achieved with respective power penalties of 0.3dB and -0.2dB at a BER of 1.0 x 10(-3) in a directly modulated DFB laser-based intensity modulation and direct detection system without in-line optical amplification and chromatic dispersion compensation. The impacts of variable power loading as well as electrical and optical components on the transmission performance of the demonstrated transceivers are experimentally explored in detail. In addition, numerical simulations also show that variable power loading is an extremely effective means of escalating system performance to its maximum potential.
Resumo:
The feasibility of utilising low-cost, un-cooled vertical cavity surface-emitting lasers (VCSELs) as intensity modulators in real-time optical OFDM (OOFDM) transceivers is experimentally explored, for the first time, in terms of achievable signal bit rates, physical mechanisms limiting the transceiver performance and performance robustness. End-to-end real-time transmission of 11.25 Gb/s 64-QAM-encoded OOFDM signals over simple intensity modulation and direct detection, 25 km SSMF PON systems is experimentally demonstrated with a power penalty of 0.5 dB. The low extinction ratio of the VCSEL intensity-modulated OOFDM signal is identified to be the dominant factor determining the maximum obtainable transmission performance. Experimental investigations indicate that, in addition to the enhanced transceiver performance, adaptive power loading can also significantly improve the system performance robustness to variations in VCSEL operating conditions. As a direct result, the aforementioned capacity versus reach performance is still retained over a wide VCSEL bias (driving) current (voltage) range of 4.5 mA to 9 mA (275 mVpp to 320 mVpp). This work is of great value as it demonstrates the possibility of future mass production of cost-effective OOFDM transceivers for PON applications.
Resumo:
7.5Gb/s real-time end-to-end optical OFDM (OOFDM) transceivers incorporating variable power loading on each individual subcarrier are demonstrated experimentally, for the first time, using a live-optimized RSOA intensity modulator having a modulation bandwidth as narrow as 1GHz. Colourless real-time 16-QAM-encoded OOFDM signal transmission at 7.5Gb/s over 25km SSMF is achieved across the C-band in simple IMDD systems without in-line optical amplification and dispersion compensation. Copyright © 2010 The authors.
Resumo:
Low-cost, narrow modulation bandwidth, un-cooled VCSELs can be utilized to directly modulate 64-QAM-encoded 11.25Gb/s signals for end-to-end real-time optical OFDM transmission over 25km SSMF IMDD systems with excellent performance robustness. © 2011 Optical Society of America.
Resumo:
The 7.5-Gb/s real-time end-to-end optical orthogonal frequency-division- multiplexing (OOFDM) transceivers incorporating variable power loading on each individual subcarrier are demonstrated experimentally using a live-optimized reflective semiconductor optical amplifier intensity modulator having a modulation bandwidth as narrow as 1 GHz. Real-time OOFDM signal transmission at 7.5 Gb/s over 25-km standard single-mode fiber is achieved across the $C$-band in simple intensity modulation and direct detection systems without in-line optical amplification and dispersion compensation. © 2006 IEEE.