975 resultados para delta 15N, organic matter
Resumo:
Stable isotopes of sedimentary nitrogen and organic carbon are widely used as proxy variables for biogeochemical parameters and processes in the water column. In order to investigate alterations of the primary isotopic signal by sedimentary diagenetic processes, we determined concentrations and isotopic compositions of inorganic nitrogen (IN), organic nitrogen (ON), total nitrogen (TN), and total organic carbon (TOC) on one short core recovered from sediments of the eastern subtropical Atlantic, between the Canary Islands and the Moroccan coast. Changes with depth in concentration and isotopic composition of the different fractions were related to early diagenetic conditions indicated by pore water concentrations of oxygen, nitrate, and ammonium. Additionally, the nature of the organic matter was investigated by Rock-Eval pyrolysis and microscopic analysis. A decrease in ON during aerobic organic matter degradation is accompanied by an increase of the 15N/14N ratio. Changes in the isotopic composition of ON can be described by Rayleigh fractionation kinetics which are probably related to microbial metabolism. The influence of IN depleted in 15N on the bulk sedimentary (TN) isotope signal increases due to organic matter degradation, compensating partly the isotopic changes in ON. In anoxic sediments, fixation of ammonium between clay lattices results in a decrease of stable nitrogen isotope ratio of IN and TN. Changes in the carbon isotopic composition of TOC have to be explained by Rayleigh fractionation in combination with different remineralization kinetics of organic compounds with different isotopic composition. We have found no evidence for preferential preservation of terrestrial organic carbon. Instead, both TOC and refractory organic carbon are dominated by marine organic matter. Refractory organic carbon is depleted in 13C compared to TOC.
Resumo:
The Agulhas Bank region, south of Africa, is an oceanographically important and complex area. The leakage of warm saline Indian Ocean water into the South Atlantic around the southern tip of Africa is a crucial factor in the global thermohaline circulation. Foraminiferal assemblage, stable isotope and sedimentological data from the top 10 m of core MD962080, recovered from the western Agulhas Bank Slope, are used to indicate changes in water mass circulation in the southeastern South Atlantic for the last 450 kyr. Sedimentological and planktonic foraminiferal data give clear signals of cold water intrusions. The benthic stable isotope record provides the stratigraphic framework and indicates that the last four climatic cycles are represented (i.e. down to marine isotope stage (MIS) 12). The planktonic foraminiferal assemblages bear a clear transitional to subantarctic character with Globorotalia inflata and Neogloboquadrina pachyderma (dextral) being the dominant taxa. Input of cold, subantarctic waters into the region by means of leakage through the Subtropical Convergence, as part of Agulhas ring shedding, and a general cooling of surface waters is suggested by increased occurrence of the subantarctic assemblage during glacial periods. Variable input of Indian Ocean waters via the Agulhas Current is indicated by the presence of tropical/subtropical planktonic foraminiferal species Globoquadrina dutertrei, Globigerinoides ruber (alba) and Globorotalia menardii with maximum leakage occurring at glacial terminations. The continuous presence of G. menardii throughout the core suggests that the exchange of water from the South Indian Ocean to the South Atlantic Ocean was never entirely obstructed in the last 450 kyr. The benthic carbon isotope record and sediment textural data reflect a change in bottom water masses over the core location from North Atlantic Deep Water to Upper Southern Component Water. Planktonic foraminiferal assemblages and sediment composition indicate a profound change in surface water conditions over the core site approximately 200-250 kyr BP, during MIS 7, from mixed subantarctic and transitional water masses to overall warmer surface water conditions.