915 resultados para degradation of footwear
Resumo:
Several samples of poly(vinyl formal) having the same vinyl alcohol content (8–9%) but varying contents of vinyl acetate (6–22%) and vinyl formol (70–85%) were prepared and subjected to thermogravimetric analysis, in air and nitrogen atmospheres, employing both isothermal and dynamic methods. Kinetic parameters determined from both the isothermal and dynamic TGA data are compared. The activation energy is seen to be largely dependent on the degree of conversion, implying a complex degradation reaction. The activation energy is also much less for degradation in air than in nitrogen, which can be explained by a reaction with oxygen-producing structures favoring degradation. The activation energy is less sensitive to variation in polymer composition for degradation in air than in nitrogen. Thus, in the dynamic process, the activation energy value decreases (from 36 to 23 kcal/mole) with increasing acetate content (from 6 to 22%) in nitrogen atmosphere, while in air the activation energy value increases only moderately (from 21 to 27 kcal/mole) with increasing acetate content (from 6 to 22%). The order of reaction is nearly unity, irrespective of the composition of the polymer, both in air and nitrogen.
Resumo:
Several samples of poly(vinyl formal) having the same vinyl alcohol content (8–9%) but varying contents of vinyl acetate (6–22%) and vinyl formol (70–85%) were prepared and subjected to thermogravimetric analysis, in air and nitrogen atmospheres, employing both isothermal and dynamic methods. Kinetic parameters determined from both the isothermal and dynamic TGA data are compared. The activation energy is seen to be largely dependent on the degree of conversion, implying a complex degradation reaction. The activation energy is also much less for degradation in air than in nitrogen, which can be explained by a reaction with oxygen-producing structures favoring degradation. The activation energy is less sensitive to variation in polymer composition for degradation in air than in nitrogen. Thus, in the dynamic process, the activation energy value decreases (from 36 to 23 kcal/mole) with increasing acetate content (from 6 to 22%) in nitrogen atmosphere, while in air the activation energy value increases only moderately (from 21 to 27 kcal/mole) with increasing acetate content (from 6 to 22%). The order of reaction is nearly unity, irrespective of the composition of the polymer, both in air and nitrogen.
Resumo:
The mechano-chemical degradation of poly(methyl methacrylate) (PMMA), poly(ethyl methacrylate) (PEMA) and poly(n-butyl methacrylate) (PBMA) using ultrasound (US), ultraviolet (UV) radiation and a photoinitiator (benzoin) has been investigated. The degradation of the polymers was monitored using the reduction in number average molecular weight (M-n) and polydispersity (PDI). A degradation mechanism that included the decomposition of the initiator, generation of polymer radicals by the hydrogen abstraction of initiator radicals, reversible chain transfer between stable polymer and polymer radicals was proposed. The mechanism assumed mid-point chain scission due to US and random scission due to UV radiation. A series of experiments with different initial M-n of the polymers were performed and the results indicated that, irrespective of the initial PDI, the PDI during the sono-photooxidative degradation evolved to a steady state value of 1.6 +/- 0.05 for all the polymers. This steady state evolution of PDI was successfully predicted by the continuous distribution kinetics model. The rate coefficients of polymer scission due to US and UV exhibited a linear increase and decrease with the size of the alkyl group of the poly(alkyl methacrylate)s, respectively. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
An oxidative pathway hitherto unknown for tile degradation of a sesquiterpene alcohol, nerolidol (I) by Alcaligenes eutrophus is presented. Fermentation of nerolidol (I) by this organism in a mineral salts medium resulted in the formation of geranylacetone (II) and an optically active alcohol (S)-(+)-geranylacetol (III), as major metabolites. Nerolidol (I) induced cells readily transformed 1,2-epoxynerolidol (IV) and 1,2-dihydroxynerolidol (V) into geranylacetone (II). These cells also exhibited their ability to carry out stereospecific reduction of II into (S)-(+)-geranylacetol (III). Oxygen uptake studies clearly indicated that nerolidol induced cells oxidized compounds II, III, IV, V and ethyleneglycol. Based on these observations a new oxidative pathway for the degradation of I is suggested which envisages the epoxidation of the terminal double bond, opening of the epoxide and cleavage between C-2 and C-3 in a manner similar to the periodate oxidation of diol.
Resumo:
The present research work reports the eosin Y (EY) and fluorescein (FL) sensitized visible light degradation of phenol, 4-chlorophenol (CP), 2,4-dichlorophenol (DCP) and 2,4,6-trichlorophenol (TCP) using combustion synthesized nano-TiO2 (CS TiO2). The rate of degradation of the phenolic compounds was higher in the presence of EY/CS TiO2 compared to FL/CS TiO2 system. A detailed mechanism of sensitized degradation was proposed and a mechanistic model for the rate of degradation of the phenolic compound was derived using the pyramidal network reduction technique. It was found that at low initial dye concentrations, the rate of degradation of the phenolic compound is first order in the concentration of the dye, while at high initial dye concentrations, the rate is first order in the concentration of the phenolic compound. The order of degradation of the different phenolic compounds follows: CP > TCP > DCP > phenol. The different phenolic and dye intermediates that were formed during the degradation were identified by liquid chromatography-mass spectrometry (LC-MS) and the most probable pathway of degradation is proposed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Pseudomonas cepacia CSV90 is able to utilize 2,4-dichlorophenoxyacetate (2,4-D) and 2-methyl-4-chlorophenoxyacetate as sole sources of carbon and energy. Mutants of the strain CSV90 which had lost this ability appeared spontaneously on a nonselective medium. The wild-type strain harbored a 90-kb plasmid, pMAB1, whereas 2,4-D-negative mutants either lost the plasmid or had a 70-kb plasmid, pMAB2. The plasmid pMAB2 was found to have undergone a deletion Of a 20-kb fragment of pMAB1. The plasmid-free mutants regained the ability to degrade 2,4-D after introduction of purified pMAB1 by electroporation. Cloning in Escherichia coli of a 10-kb BamHI fragment from pMAB1, the region absent in pMAB2, resulted in the expression of the gene tfdC encoding 3,5-dichlorocatechol 1,2-dioxygenase. After subcloning, the tfdC gene was located in a 1.6-kb HindIII fragment. The nucleotide sequence of the tfdC gene and the restriction map of its contiguous region are identical to those of the well-characterized 2,4-D-degradative plasmid pJP4 of Alcaligenes eutrophus, whereas the overall restriction maps of the two plasmids are different. The N-terminal 44-amino-acid sequence of the enzyme purified from the strain CSV90 confirmed the reading frame in the DNA sequence for tfdC and indicated that the initiation codon GUG is read as methionine instead of valine.
Chemical Degradation of Poly(styrene disulfide) and Poly(styrene tetrasulfide) by Triphenylphosphine
Resumo:
The chemical degradation of polysulfide polymers, viz., poly(styrene disulfide), PSD, and poly(styrene tetrasulfide), PST, has been achieved using triphenylphosphine, TPP. The reaction was monitored using P-31 NMR spectroscopy. The solubility analysis of the reaction residues reveals that while PSD degrades completely, PST on the other hand, undergoes complete degradation only when the concentration of TPP is increased. Moreover, the reaction of PST with TPP occurs at room temperature whereas PSD requires a higher temperature. The reaction products were analyzed using the direct pyrolysis mass spectrometric (DP-MS) technique, and their formation has been explained through an ionic mechanism.
Resumo:
Nanosized powders of TiO2 (anatase) were prepared by the hydrothermal method, acid-medium hydrolysis or by vacuum freeze-drying of sols, and annealing at temperatures <700-degrees-C. Photocatalytic activities of these powders in the mineralization of phenol, were evaluated in comparison to that of Degussa P25. Kinetic data indicated that surface hydroxylation had a retarding effect on the degradation of phenol. Formation of stable peroxotitanium species were observed on hydroxylated powders, whereas only V(Ti)-O- hole trap centres were detected by EPR on the heat treated samples. The data supports direct hole oxidation of the substrate preadsorbed on the photocatalyst, which is otherwise blocked by surface hydroxyls.
Resumo:
The thermal degradation of poly(methyl methacrylate) (PMMA) in the presence of polysulfide polymers, namely, poly( styrene disulfide) (PSD) and poly(styrene tetrasulfide) (PST) was studied using thermogravimetry (TG) and direct pyrolysis-mass spectrometric (DP-MS) analysis. Both PSD and PST were found to stabilizethe PMMA degradation, which was explained by both radical recombination and a chain-transfer mechanism. (C) 1997 John Wiley & Sons, Inc.
Resumo:
A new class of biodegradable copolyesters was synthesized by the catalyst-free melt condensation of sorbitol with citric acid, tartaric acid, and sebacic acid. The resulting polymers were designated as poly(sorbitol citric sebacate) p(SCS)] and poly(sorbitol tartaric sebacate) p(STS)]. The synthesized polymers were characterized by Fourier transform infrared spectroscopy, H-1-NMR spectroscopy, and differential scanning calorimetry analysis. Porous spongelike scaffolds were prepared with a salt-leaching technique and characterized with scanning electron microscopy. Tensile testing of the p(SCS) and p(STS) polymers showed that they exhibited a wide range of mechanical properties. The Young's modulus and tensile strengths of the polymers ranged from 1.06 +/- 0.12 to 462.65 +/- 34.21 MPa and from 0.45 +/- 0.04 to 20.32 +/- 2.54 MPa, respectively. In vitro degradation studies were performed on disc-shaped polymer samples. The half-life of the polymers ranged from 0.54 to 38.52 days. The percentage hydration of the polymers was in the range 9.36 +/- 1.26 to 78.25 +/- 1.91, with sol contents of 2-14%. At any given polymer composition, the Young's modulus and tensile strength of p(SCS) was higher than that of p(STS), whereas the degradation rates of p(SCS) was lower than that of p(STS). This was attributed to the structural difference between the citric and tartaric monomers and to the degree of crosslinking. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 121: 2861-2869, 2011
Resumo:
A series of Pd ion-substituted CeO2-ZrO2 solid solutions were synthesized using the solution combustion technique. H2O2-assisted degradation of orange G was carried out in the presence of the catalysts. The activity of the catalysts was found to increase with the introduction of the second component in the solid solution, as signified by an increase in the rate constants and lowering of activation energy. The study showed the involvement of lattice oxygen and the importance of reducibility of the compound for the reaction. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Polymer degradation in solution has several advantages over melt pyrolysis, The degradation of low-density polyethylene (LDPE) occurs at much lower temperatures in solution (280-360degreesC) than in conventional melt pyrolysis (400-450degreesC). The thermal degradation kinetics of LDPE in solution was investigated in this work. LDPE was dissolved in liquid paraffin and degraded for 3 h at various temperatures (280-360degreesC). Samples were taken at specific times and analyzed with high-pressure liquid chromatography/gel permeation chromatography for the molecular weight distribution (MWD), The time evolution of the MWD was modeled with continuous distribution kinetics. Data indicated that LDPE followed random-chain-scission degradation. The rapid initial drop in molecular weight, observed up to 45 min, was attributed to the presence of weak links in the polymer. The rate coefficients for the breakage of weak and strong links were determined, and the corresponding average activation energies were calculated to be 88 and 24 kJ/mol, respectively. (C) 2002 John Wiley Sons, Inc.
Resumo:
The kinetics of thermal degradation of poly(vinyl chloride) (PVC) in solution was investigated at various temperatures (210-250degreesC). The degradation rate coefficients were determined from the time evolution of the molecular weight distribution (MWD). The energy of activation, determined from the temperature dependence of the rate coefficient, was 26.6 kcal/mol. The degradation of PVC was also studied in the presence of a catalyst (HZSM-5 zeolite). The results indicated that increase of the degradation rate of PVC is first order with the HZSM-5 concentration up to 50 g/L and zero order at higher concentrations. The thermal degradation kinetics of PVC in the presence of 50 g/L of the catalyst was studied at various temperatures. The temperature dependency of the rate coefficient was used to calculate the activation energy (21.5 kcal/mol). This is consistent with the observation that the presence of a catalyst generally decreases the activation energy and promotes degradation. (C) 2002 John Wiley Sons, Inc.
Resumo:
The thermal degradation of vinyl polyperoxides, poly(styrene peroxide, (PSP), poly(alpha-methylstyrene peroxide) (PAMSP) and poly(alpha-phenylstyrene pet-oxide) (PAPSP), was carried out at different temperatures in toluene. The time evolution of molecular weight distributions (MWDs) was determined by gel permeation chromatography (GPC). A continuous distribution model was used to evaluate the random chain degradation rate coefficients. The activation energies, determined from the temperature dependence of the rate coefficients, suggest that thermal degradation of polyperoxides is controlled by the dissociation of the O-O bonds in the backbone of the polymer chain. Among the three polyperoxides investigated, the thermal stability is the highest for PAPSP and the lowest for PAMSP. (C) 2002 Elsevier Science Ltd. All rights reserved.