978 resultados para dangerous chemicals
Resumo:
Plant uptake of organic chemicals is an important process when considering the risks associated with land contamination, the role of vegetation in the global cycling of persistent organic pollutants, and the potential for industrial discharges to contaminate the food chain. There have been some significant advances in our understanding of the processes of plant uptake of organic chemicals in recent years; most notably there is now a better understanding of the air to plant transfer pathway, which may be significant for a number of industrial chemicals. This review identifies the key processes involved in the plant uptake of organic chemicals including those for which there is currently little information, e.g., plant lipid content and plant metabolism. One of the principal findings is that although a number of predictive models exist using established relationships, these require further validation if they are to be considered sufficiently robust for the purposes of contaminated land risk assessment or for prediction of the global cycling of persistent organic pollutants. Finally, a number of processes are identified which should be the focus of future research
Resumo:
Two field trials were conducted using established apple (Malus cv. Golden Delicious) and pear (Pyrus communis 'Williams' Bon Chretien') to assess the efficacy of three commercially available systemic inducing resistance (SIR) products, Messenger (a.i. Harpin protein), Phoenix (a.i. Potassium phosphite) and Rigel (a.i. Salicylic acid derivative) applied at four different growth stages of tree development (bud break, green cluster, 90% petal fall, early fruitlet) against the foliar pathogens Venturia inaequalis and Venturia pirina which cause apple and pear scab respectively. A conventional synthetic fungicide (penconazole) used within the UK for apple and pear scab control was included for comparison. Little efficacy as scab protectants was demonstrated when each SIR product and penconazole was applied at only two growth stages (bud break, green cluster). However when the above compounds were applied at three or more growth stages efficacy as scab protectants was confirmed. The synthetic fungicide penconazole provided greatest protection against apple and pear scab in both the 2006 and 2007 field trials. There was little difference in the magnitude of scab protection conferred by each SIR agent. Results suggest application of at least three sprays during bud break to early fruitlet formation with an appropriate SIR agent may provide a useful addition to existing methods of apple and pear scab management under field conditions. (C) 2009 Published by Elsevier Ltd.
Resumo:
The introduction of Registration, Evaluation and Authorisation of Chemicals (REACH), requires companies to register and risk assess all substances produced or imported in volumes of >1 tonne per year. Extrapolation methods which use existing data for estimating the effects of chemicals are attractive to industry, and comparative data are therefore increasingly in demand. Data on natural toxic chemicals could be used for extrapolation methods Such as read-across. To test this hypothesis, the toxicity of natural chemicals and their synthetic analogues were compared using standardised toxicity tests. Two chemical pairs: the napthoquinones, juglone (natural) and 1,4-naphthoquinone (synthetic); and anthraquinones, emodin (natural) and quinizarin (synthetic) were chosen, and their comparative effects on the survival and reproduction of collembolans, earthworms, enchytraeids and predatory mites were assessed. Differences in sensitivity between the species were observed with the predatory mite (Hypoaspis aculeifer) showing the least sensitivity. Within the chemical pairs, toxicity to lethal and sub-lethal endpoints was very similar for the four invertebrate species. The exception was earthworm reproduction, which showed differential sensitivity to the chemicals in both naphthoquinone and anthraquinone pairs. Differences in toxicity identified in the present study may be related to degree of exposure and/or subtle differences in the mode of toxic action for the chemicals and species tested. It may be possible to predict differences by identifying functional groups which infer increased or decreased toxicity in one or other chemical. The development of such techniques would enable the use of read-across from natural to synthetic chemicals for a wider group of compounds. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In the decade that has elapsed since the suggestion that exposure of the foetal/developing male to environmental oestrogens could be the cause of subsequent reproductive and developmental effects in men, there has been little definitive research to provide conclusions to the hypothesis. Issues of exposure and low potency of environmental oestrogens may have reduced concerns. However, the hypothesis that chemicals applied in body care cosmetics (including moisturizers, creams, sprays or lotions applied to axilla or chest or breast areas) may be affecting breast cancer incidence in women presents a different case scenario, not least in the consideration of the exposure issues. The specific cosmetic type is not relevant but the chemical ingredients in the formulations and the application to the skin is important. The most common group of body care cosmetic formulation excipients, namely p-hydroxybenzoic acid esters or parabens, have been shown recently to be oestrogenic in vitro and in vivo and now have been detected in human breast tumour tissue, indicating absorption (route and causal associations have yet to be confirmed). The hypothesis for a link between oestrogenic ingredients in underarm and body care cosmetics and breast cancer is forwarded and reviewed here in terms of. data on exposure to body care cosmetics and parabens, including dermal absorption; paraben oestrogenicity; the role of oestrogen in breast cancer; detection of parabens in breast tumours; recent epidemiology studies of underarm cosmetics use and breast cancer; the toxicology database; the current regulatory status of parabens and regulatory toxicology data uncertainties. Notwithstanding the major public health issue of the causes of the rising incidence of breast cancer in women, this call for further research may provide the first evidence that environmental factors may be adversely affecting human health by endocrine disruption, because exposure to oestrogenic chemicals through application of body care products (unlike diffuse environmental chemical exposures) should be amenable to evaluation, quantification and control. The exposure issues are clear and the exposed population is large, and these factors should provide the necessary impetus to investigate this potential issue of public health. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
The best of both worlds: The synthesis of carbon-encapsulated iron-based magnetic nanoparticles is described. With such small catalysts that have macroscopic magnetic properties, the advantages of homogeneous or colloidal and heterogeneous catalysts can be combined.
Resumo:
Studies of ignorance-driven decision making have been employed to analyse when ignorance should prove advantageous on theoretical grounds or else they have been employed to examine whether human behaviour is consistent with an ignorance-driven inference strategy (e. g., the recognition heuristic). In the current study we examine whether-under conditions where such inferences might be expected-the advantages that theoretical analyses predict are evident in human performance data. A single experiment shows that, when asked to make relative wealth judgements, participants reliably use recognition as a basis for their judgements. Their wealth judgements under these conditions are reliably more accurate when some of the target names are unknown than when participants recognize all of the names (a "less-is-more effect"). These results are consistent across a number of variations: the number of options given to participants and the nature of the wealth judgement. A basic model of recognition-based inference predicts these effects.
Resumo:
The human population is now exposed on a daily basis to a multitude of environmental pollutant chemicals that would not have been present a century ago, and many of these chemicals have been detected in the human breast. The fatty nature of human breast tissue makes it a particular target for lipophilic as well as hydrophilic pollutant chemicals, which may enter the human body through oral, respiratory, or dermal routes. These chemicals possess a range of endocrine-disrupting properties and genotoxic activity, but from a breast cancer perspective the greatest concern has centered around their ability to mimic or interfere with the action of estrogen. The breast is an endocrine target organ and exposure to estrogen is a known risk factor for breast cancer.
Resumo:
The soil−air−plant pathway is potentially important in the vegetative accumulation of organic pollutants from contaminated soils. While a number of qualitative frameworks exist for the prediction of plant accumulation of organic chemicals by this pathway, there are few quantitative models that incorporate this pathway. The aim of the present study was to produce a model that included this pathway and could quantify its contribution to the total plant contamination for a range of organic pollutants. A new model was developed from three submodels for the processes controlling plant contamination via this pathway: aerial deposition, soil volatilization, and systemic translocation. Using the combined model, the soil−air−plant pathway was predicted to account for a significant proportion of the total shoot contamination for those compounds with log KOA > 9 and log KAW < −3. For those pollutants with log KOA < 9 and log KAW > −3 there was a higher deposition of pollutant via the soil−air−plant pathway than for those chemicals with log KOA > 9 and log KAW < −3, but this was an insignificant proportion of the total shoot contamination because of the higher mobility of these compounds via the soil−root−shoot pathway. The incorporation of the soil−air−plant pathway into the plant uptake model did not significantly improve the prediction of the contamination of vegetation from polluted soils when compared across a range of studies. This was a result of the high variability between the experimental studies where the bioconcentration factors varied by 2 orders of magnitude at an equivalent log KOA. One potential reason for this is the background air concentration of the pollutants under study. It was found background air concentrations would dominate those from soil volatilization in many situations unless there was a soil hot spot of contamination, i.e., >100 mg kg−1.
The social cost of chemicals: the cost and benefits of future chemicals policy in the European Union
Resumo:
Climate models provide compelling evidence that if greenhouse gas emissions continue at present rates, then key global temperature thresholds (such as the European Union limit of two degrees of warming since pre-industrial times) are very likely to be crossed in the next few decades. However, there is relatively little attention paid to whether, should a dangerous temperature level be exceeded, it is feasible for the global temperature to then return to safer levels in a usefully short time. We focus on the timescales needed to reduce atmospheric greenhouse gases and associated temperatures back below potentially dangerous thresholds, using a state-of-the-art general circulation model. This analysis is extended with a simple climate model to provide uncertainty bounds. We find that even for very large reductions in emissions, temperature reduction is likely to occur at a low rate. Policy-makers need to consider such very long recovery timescales implicit in the Earth system when formulating future emission pathways that have the potential to 'overshoot' particular atmospheric concentrations of greenhouse gases and, more importantly, related temperature levels that might be considered dangerous.