999 resultados para d13C std dev
Resumo:
Understanding the preservation and deposition history of organic molecules is crucial for the understanding of paleoenvironmental information contained in their abundance ratios such as Uk'37 and TEX86 used as proxies for sea surface temperature (SST). Based on their relatively high refractivity, alkenones and glycerol dialkyl glycerol tetraethers (GDGTs) can survive postdepositional processes like lateral transport, potentially causing inferred SSTs to be misleading. Likewise, selective preservation of alkenones and GDGTs may cause biases of the SST proxies themselves and can lead to decoupling of both proxy records. Here we report compound-specific radiocarbon data of marine biomarkers including alkenones, GDGTs, and low molecular weight (LMW) n-fatty acids from Black Sea sediments deposited under different redox regimes to evaluate the potentially differential preservation of both biomarker classes and its effect on the SST indices Uk'37 and TEX86 . The decadal D14C values of alkenones, GDGTs, and LMW n-fatty acids indicate similar preservation under oxic, suboxic, and anoxic redox regimes and no contribution of pre-aged compounds, e.g., by lateral supply. Moreover, similar 14C concentrations of crenarchaeol, alkenones, and LMW n-fatty acids imply that the thaumarchaeotal GDGTs preserved in these sediments are produced in the euphotic zone rather than in subsurface/thermocline waters. However, we observe biomarker-based SSTs that strongly deviate (deltaSST up to 8.4 °C) from in situ measured mean annual SSTs in the Black Sea. This is not due to redox-dependent differential biomarker preservation as implied by their D14C values and spatial SST pattern. Since contributions from different sources can largely be excluded, the deviation of the Uk'37 and TEX86 proxy-derived SSTs from in situ SSTs requires further study of phylogenetic and other yet unknown environmental controls on alkenone and GDGT lipid distributions in the Black Sea.
Resumo:
We present new Holocene century to millennial-scale proxies for the well-dated piston core MD99-2269 from Húnaflóadjúp on the North Iceland Shelf. The core is located in 365 mwd and lies close to the fluctuating boundary between Atlantic and Arctic/Polar waters. The proxies are: alkenone-based SST°C, and Mg/Ca SST°C estimates and stable d13C and d18O values on planktonic and benthic foraminifera. The data were converted to 60 yr equi-spaced time-series. Significant trends in the data were extracted using Singular Spectrum Analysis and these accounted for between 50% and 70% of the variance. A comparison between these data with previously published climate proxies from MD99-2269 was carried out on a data set which consisted of 14-variable data set covering the interval 400-9200 cal yr BP at 100 yr time steps. This analysis indicated that the 1st two PC axes accounted for 57% of the variability with high loadings clustering primarily into "nutrient" and "temperature" proxies. Clustering on the 100 yr time-series indicated major changes in environment at ~6350 and ~3450 cal yr BP, which define early, mid- and late Holocene climatic intervals. We argue that a pervasive freshwater cap during the early Holocene resulted in warm SST°s, a stratified water column, and a depleted nutrient supply. The loss of the freshwater layer in the mid-Holocene resulted in high carbonate production, and the late Holocene/neoglacial interval was marked by significantly more variable sea surface conditions.
Resumo:
Late Pliocene changes in the advection of Mediterranean Outflow Water (MOW) derivates were reconstructed at northeast Atlantic DSDP/ODP sites 548 and 982 and compared to records of WMDW at West Mediterranean Site 978. Neodymium isotope (epsilon-Nd) values more positive than ~10.5/~ 11 reflect diluted MOW derivates that spread almost continuously into the northeast Atlantic from 3.7 to 2.55 Ma, reaching Rockall Plateau Site 982 from 3.63 to 2.75 Ma. From 3.4 to 3.3 Ma average MOW temperature and salinity increased by 2°-4 °C and ~1 psu both at proximal Site 548 and distal Site 982. The rise implies a rise in flow strength, coeval with a long-term rise in both west Mediterranean Sea surface salinity by almost 2 psu and average bottom water salinity (BWS) by ~1 psu, despite inherent uncertainties in BWS estimates. The changes were linked with major Mediterranean aridification and a drop in African monsoon humidity. In contrast to model expectations, the rise in MOW salt discharge after 3.4 Ma did not translate into improved ventilation of North Atlantic Deep Water, since it possibly was too small to significantly influence Atlantic Meridional Overturning Circulation. Right after ~2.95 Ma, with the onset of major Northern Hemisphere Glaciation, long-term average bottom water temperature (BWT) and BWS at Site 548 dropped abruptly by ~5 °C and ~1-2 psu, in contrast to more distal Site 982, where BWT and BWS continued to oscillate at estimates of ~2 °C and 1.5-2.5 psu higher than today until ~2.6 Ma. We relate the small-scale changes both to a reduced MOW flow and to enhanced dilution by warm waters of a strengthened North Atlantic Current temporarily replacing MOW derivates at Rockall Plateau.
Resumo:
Various studies have demonstrated that the stable hydrogen isotopic composition (dD) of terrestrial leaf waxes tracks that of precipitation (dDprecip) both spatially across climate gradients and over a range of different timescales. Yet, reconstructed estimates of dDprecip and corresponding rainfall typically remain largely qualitative, due mainly to uncertainties in plant ecosystem net fractionation, relative humidity, and the stability of the amount effect through time. Here we present dD values of the C31n-alkane (dDwax) from a marine sediment core offshore the Northwest (NW) African Sahel covering the past 100 years and overlapping with the instrumental record of rainfall. We use this record to investigate whether accurate, quantitative estimates of past rainfall can be derived from our dDwax time series. We infer the composition of vegetation (C3/C4) within the continental catchment area by analysis of the stable carbon isotopic composition of the same compounds (d13Cwax), calculated a net ecosystem fractionation factor, and corrected the dDwax time series accordingly to derive dDprecip. Using the present-day relationship between dDprecip and the amount of precipitation in the tropics, we derive quantitative estimates of past precipitation amounts. Our data show that (a) vegetation composition can be inferred from d13Cwax, (b) the calculated net ecosystem fractionation represents a reasonable estimate, and (c) estimated total amounts of rainfall based on dDwax correspond to instrumental records of rainfall. Our study has important implications for future studies aiming to reconstruct rainfall based on dDwax; the combined data presented here demonstrate that it is feasible to infer absolute rainfall amounts from sedimentary dDwax in tandem with d13Cwax in specific depositional settings.
Resumo:
The response of natural CH4 sources to climate changes will be an important factor to consider as concentrations of this potent greenhouse gas continue to increase. Polar ice cores provide the means to assess this sensitivity in the past and have shown a close connection between CH4 levels and northern hemisphere temperature variability over the last glacial cycle. However, the contribution of the various CH4 sources and sinks to these changes is still a matter of debate. Contemporaneous stable CH4 isotope records in ice cores provide additional boundary conditions for assessing changes in the CH4 sources and sinks. Here we present new ice core CH4 isotope data covering the last 160,000 years, showing a clear decoupling between CH4 loading and carbon isotopic variations over most of the record. We suggest that d13CH4 variations were not dominated by a change in the source mix but rather by climate- and CO2-related ecosystem control on the isotopic composition of the methane precursor material, especially in seasonally inundated wetlands in the tropics. In contrast, relatively stable d13CH4 intervals occurred during large CH4 loading changes concurrently with past climate changes implying that most CH4 sources (most notably tropical wetlands) responded simultaneously.
Resumo:
Insight into past changes of upper ocean stratification, circulation, and nutrient signatures rely on our knowledge of the apparent calcification depth (ACD) and ecology of planktonic foraminifera, which serve as archives for paleoceanographic relevant geochemical signals. The ACD of different species varies strongly between ocean basins, but also regionally. We constrained foraminiferal ACDs in the western Pacific warm pool (Manihiki Plateau) by comparing stable oxygen and carbon isotopes (d18Ocalcite, d13Ccalcite) as well as Mg/Ca ratios from living planktonic foraminifera to in-situ physical and chemical water mass properties (temperature, salinity, d18Oseawater, d13CDIC). Our analyses point to Globigerinoides ruber as the shallowest dweller, followed by Globigerinoides sacculifer, Neogloboquadrina dutertrei, Pulleniatina obliquiloculata and Globotaloides hexagonus inhabiting increasingly greater depths. These findings are consistent with other ocean basins; however, absolute ACDs differ from other studies. The uppermost mixed-layer species G. ruber and G. sacculifer denote mean calcification depths of ~95 m and ~120 m, respectively. These Western Pacific ACDs are much deeper than in most other studies and most likely relate to the thick surface mixed layer and the deep chlorophyll maximum in this region. Our results indicate that N. dutertrei appears to be influenced by mixing waters from the Pacific equatorial divergence, while P. obliquiloculata with an ACD of ~160 m is more suitable for thermocline reconstructions. ACDs of G. hexagonus reveal a deep calcification depth of ~450 m in oxygen-depleted, but nutrient-rich water masses, consistent to other studies. As the d13C of G. hexagonus is in near-equilibrium with ambient seawater, we suggest this species is suitable for tracing nutrient conditions in equatorial water masses originating in extra-topical regions.
Resumo:
Detailed knowledge of the extent of post-genetic modifications affecting shallow submarine hydrocarbons fueled from the deep subsurface is fundamental for evaluating source and reservoir properties. We investigated gases from a submarine high-flux seepage site in the anoxic Eastern Black Sea in order to elucidate molecular and isotopic alterations of low-molecular-weight hydrocarbons (LMWHC) associated with upward migration through the sediment and precipitation of shallow gas hydrates. For this, near-surface sediment pressure cores and free gas venting from the seafloor were collected using autoclave technology at the Batumi seep area at 845 m water depth within the gas hydrate stability zone. Vent gas, gas from pressure core degassing, and from hydrate dissociation were strongly dominated by methane (>99.85 mol.% of Sum[C1-C4, CO2]). Molecular ratios of LMWHC (C1/[C2 + C3] > 1000) and stable isotopic compositions of methane (d13C = -53.5 per mill V-PDB; D/H around -175 per mill SMOW) indicated predominant microbial methane formation. C1/C2+ ratios and stable isotopic compositions of LMWHC distinguished three gas types prevailing in the seepage area. Vent gas discharged into bottom waters was depleted in methane by >0.03 mol.% (Sum[C1-C4, CO2]) relative to the other gas types and the virtual lack of 14C-CH4 indicated a negligible input of methane from degradation of fresh organic matter. Of all gas types analyzed, vent gas was least affected by molecular fractionation, thus, its origin from the deep subsurface rather than from decomposing hydrates in near-surface sediments is likely. As a result of the anaerobic oxidation of methane, LMWHC in pressure cores in top sediments included smaller methane fractions [0.03 mol.% Sum(C1-C4, CO2)] than gas released from pressure cores of more deeply buried sediments, where the fraction of methane was maximal due to its preferential incorporation in hydrate lattices. No indications for stable carbon isotopic fractionations of methane during hydrate crystallization from vent gas were found. Enrichments of 14C-CH4 (1.4 pMC) in short cores relative to lower abundances (max. 0.6 pMC) in gas from long cores and gas hydrates substantiates recent methanogenesis utilizing modern organic matter deposited in top sediments of this high-flux hydrocarbon seep area.
Resumo:
The oceanic carbon cycle mainly comprises the production and dissolution/ preservation of carbonate particles in the water column or within the sediment. Carbon dioxide is one of the major controlling factors for the production and dissolution of carbonate. There is a steady exchange between the ocean and atmosphere in order to achieve an equilibrium of CO2; an anthropogenic rise of CO2 in the atmosphere would therefore also increase the amount of CO2 in the ocean. The increased amount of CO2 in the ocean, due to increasing CO2-emissions into the atmosphere since the industrial revolution, has been interpreted as "ocean acidification" (Caldeira and Wickett, 2003). Its alarming effects, such as dissolution and reduced CaCO3 formation, on reefs and other carbonate shell producing organisms form the topic of current discussions (Kolbert, 2006). Decreasing temperatures and increasing pressure and CO2 enhance the dissolution of carbonate particles at the sediment-water interface in the deep sea. Moreover, dissolution processes are dependent of the saturation state of the surrounding water with respect to calcite or aragonite. Significantly increased dissolution has been observed below the aragonite or calcite chemical lysocline; below the aragonite compensation depth (ACD), or calcite compensation depth (CCD), all aragonite or calcite particles, respectively, are dissolved. Aragonite, which is more prone to dissolution than calcite, features a shallower lysocline and compensation depth than calcite. In the 1980's it was suggested that significant dissolution also occurs in the water column or at the sediment-water interface above the lysocline. Unknown quantities of carbonate produced at the sea surface, would be dissolved due to this process. This would affect the calculation of the carbonate production and the entire carbonate budget of the world's ocean. Following this assumption, a number of studies have been carried out to monitor supralysoclinal dissolution at various locations: at Ceara Rise in the western equatorial Atlantic (Martin and Sayles, 1996), in the Arabian Sea (Milliman et al., 1999), in the equatorial Indian Ocean (Peterson and Prell, 1985; Schulte and Bard, 2003), and in the equatorial Pacific (Kimoto et al., 2003). Despite the evidence for supralysoclinal dissolution in some areas of the world's ocean, the question still exists whether dissolution occurs above the lysocline in the entire ocean. The first part of this thesis seeks answers to this question, based on the global budget model of Milliman et al. (1999). As study area the Bahamas and Florida Straits are most suitable because of the high production of carbonate, and because there the depth of the lysocline is the deepest worldwide. To monitor the occurrence of supralysoclinal dissolution, the preservation of aragonitic pteropod shells was determined, using the Limacina inflata Dissolution Index (LDX; Gerhardt and Henrich, 2001). Analyses of the grain-size distribution, the mineralogy, and the foraminifera assemblage revealed further aspects concerning the preservation state of the sediment. All samples located at the Bahamian platform are well preserved. In contrast, the samples from the Florida Straits show dissolution in 800 to 1000 m and below 1500 m water depth. Degradation of organic material and the subsequent release of CO2 probably causes supralysoclinal dissolution. A northward extension of the corrosive Antarctic Intermediate Water (AAIW) flows through the Caribbean Sea into the Gulf of Mexico and might enhance dissolution processes at around 1000 m water depth. The second part of this study deals with the preservation of Pliocene to Holocene carbonate sediments from both the windward and leeward basins adjacent to Great Bahama Bank (Ocean Drilling Program Sites 632, 633, and 1006). Detailed census counts of the sand fraction (250-500 µm) show the general composition of the coarse grained sediment. Further methods used to examine the preservation state of carbonates include the amount of organic carbon and various dissolution indices, such as the LDX and the Fragmentation Index. Carbonate concretions (nodules) have been observed in the sand fraction. They are similar to the concretions or aggregates previously mentioned by Mullins et al. (1980a) and Droxler et al. (1988a), respectively. Nonetheless, a detailed study of such grains has not been made to date, although they form an important part of periplatform sediments. Stable isotopemeasurements of the nodules' matrix confirm previous suggestions that the nodules have formed in situ as a result of early diagenetic processes (Mullins et al., 1980a). The two cores, which are located in Exuma Sound (Sites 632 and 633), at the eastern margin of Great Bahama Bank (GBB), show an increasing amount of nodules with increasing core depth. In Pliocene sediments, the amount of nodules might rise up to 100%. In contrast, nodules only occur within glacial stages in the deeper part of the studied core interval (between 30 and 70 mbsf) at Site 1006 on the western margin of GBB. Above this level the sediment is constantly being flushed by bottom water, that might also contain corrosive AAIW, which would hinder cementation. Fine carbonate particles (<63 µm) form the matrix of the nodules and do therefore not contribute to the fine fraction. At the same time, the amount of the coarse fraction (>63 µm) increases due to the nodule formation. The formation of nodules might therefore significantly alter the grain-size distribution of the sediment. A direct comparison of the amount of nodules with the grain-size distribution shows that core intervals with high amounts of nodules are indeed coarser than the intervals with low amounts of nodules. On the other hand, an initially coarser sediment might facilitate the formation of nodules, as a high porosity and permeability enhances early diagenetic processes (Westphal et al., 1999). This suggestion was also confirmed: the glacial intervals at Site 1006 are interpreted to have already been rather coarse prior to the formation of nodules. This assumption is based on the grain-size distribution in the upper part of the core, which is not yet affected by diagenesis, but also shows coarser sediment during the glacial stages. As expected, the coarser, glacial deposits in the lower part of the core show the highest amounts of nodules. The same effect was observed at Site 632, where turbidites cause distinct coarse layers and reveal higher amounts of nodules than non-turbiditic sequences. Site 633 shows a different pattern: both the amount of nodules and the coarseness of the sediment steadily increase with increasing core depth. Based on these sedimentological findings, the following model has been developed: a grain-size pattern characterised by prominent coarse peaks (as observed at Sites 632 and 1006) is barely altered. The greatest coarsening effect due to the nodule formation will occur in those layers, which have initially been coarser than the adjacent sediment intervals. In this case, the overall trend of the grain-size pattern before and after formation of the nodules is similar to each other. Although the sediment is altered due to diagenetic processes, grain size could be used as a proxy for e.g. changes in the bottom-water current. The other case described in the model is based on a consistent initial grain-size distribution, as observed at Site 633. In this case, the nodule reflects the increasing diagenetic alteration with increasing core depth rather than the initial grain-size pattern. In the latter scenario, the overall grain-size trend is significantly changed which makes grain size unreliable as a proxy for any palaeoenvironmental changes. The results of this study contribute to the understanding of general sedimentation processes in the periplatform realm: the preservation state of surface samples shows the influence of supralysoclinal dissolution due to the degradation of organic matter and due to the presence of corrosive water masses; the composition of the sand fraction shows the alteration of the carbonate sediment due to early diagenetic processes. However, open questions are how and when the alteration processes occur and how geochemical parameters, such as the rise in alkalinity or the amount of strontium, are linked to them. These geochemical parameters might reveal more information about the depth in the sediment column, where dissolution and cementation processes occur.
Resumo:
We attempt a reconstruction of salinity levels of the central Baltic Sea based on diatom assemblages, the isotopic composition of organic matter and sedimentological expression of anoxia over the last 10 000 years. We use the data to investigate the dependence of salinity levels on climate evolution and isostasy. Changes in salinity of surface and deep waters were most pronounced from 8400 to approximately 5000 cal. BP. Density stratification between salty deep and fresher surface waters caused the frequent development of anoxic conditions and deposition of laminated sediments on large parts of the sea floor in the central Baltic Sea, and dramatic changes in organic carbon-accumulation rates. From 5000 to 3100 cal. BP, the salinity of the basin decreased, oxygenation of deep sea floors was improved, and fertility of the sea surface was significantly reduced. This is reflected by low accumulation rates of organic carbon in bioturbated sediments. Since 2800 cal. BP, salinity rose again and anoxic periods were more common. Even though the major steps in environmental evolution in the Baltic Sea coincide with known patterns of climatic change of the North Atlantic realm over the last 10 000 years, we find no conclusive evidence for synchronous changes or linear responses on submillennial timescales. However, we note that major variations in our salinity records agree with temporal patterns of reconstructed summer warmth and winter precipitation in southern Scandinavia. Both types of record suggest that climate in the mid-Holocene was far from stable. Our data also confirm that climate evolution over the late Holocene had significant impact on environmental conditions in the Baltic Sea.
Resumo:
In a sediment core AMK4-316 (460 cm long) on the basis of radiocarbon, oxygen isotope, and lithological data climatostratigraphy is established for time interval about 145 ka. The method of factor analysis and spline interpolation applied to data on distribution of planktic foraminifera species has allowed to reconstruct average annual and seasonal temperatures and salinity at the surface and at depth 100 m. The optimum of the Last Interglaciation (5e) is characterized by maximal temperatures, low amplitudes of seasonal fluctuations, and by increased thickness of the upper homogeneous layer. The glacial hydrological mode has arisen here 115 ka ago. Coolings outstripped appropriate events of the global continental glaciation. Minimal average annual temperatures (4-4.5°C) are reconstructed for 47-45, 42, 36, 29-30, and 10 ka. For 50-30 ka interval numerous strong temperature fluctuations that reflect migrations of the polar front are established. Maximal differences of salinity at the surface and depth 100 m showing influence of melting waters were in the beginning of deglaciations (135 and 20 ka) and repeatedly arose in 50-30 ka interval. The Last Glacial Maximum (18 ka) is characterized by the lowest salinity but not by a peak of low temperatures at the surface. Surface temperature was lowered up to 10 ka. Average annual surface temperature of the Holocene optimum was 2°C above the modern one and 2°C below temperature in the Interglaciation optimum (5e), thickness of the upper homogeneous layer exceeded 100 m.
Resumo:
Chloropigments and their derivative pheopigments preserved in sediments can directly be linked to photosynthesis. Their carbon and nitrogen stable isotopic compositions have been shown to be a good recorder of recent and past surface ocean environmental conditions tracing the carbon and nitrogen sources and dominant assimilation processes of the phytoplanktonic community. In this study we report results from combined compound-specific radiocarbon and stable carbon and nitrogen isotope analysis to examine the time-scales of synthesis and fate of chlorophyll-a and its degradation products pheophytin-a, pyropheophytin-a, and 132,173-cyclopheophorbide-a-enol until burial in Black Sea core-top sediments. The pigments are mainly of marine phytoplanktonic origin as implied by their stable isotopic compositions. Pigment ?15N values indicate nitrate as the major uptake substrate but 15N-depletion towards the open marine setting indicates either contribution from N2-fixation or direct uptake of ammonium from deeper waters. Radiocarbon concentrations translate into minimum and maximum pigment ages of approximately 40 to 1200 years. This implies that protective mechanisms against decomposition such as association with minerals, storage in deltaic anoxic environments, or eutrophication-induced hypoxia and light limitation are much more efficient than previously thought. Moreover, seasonal variations of nutrient source, growth period, and habitat and their associated isotopic variability are likely at least as strong as long-term trends. Combined triple isotope analysis of sedimentary chlorophyll and its primary derivatives is a powerful tool to delineate biogeochemical and diagenetic processes in the surface water and sediments, and to assess their precise time-scales.
Resumo:
Oceanic nutrient cycling in the Southern Ocean is supposed to have an important impact on glacial-interglacial atmospheric CO2 changes and global climate. In order to characterize such nutrient cycling over the last two climatic cycles we investigated carbon and nitrogen isotopic ratios of diatom-bound organic matter (d13Cdiat and d15Ndiat, respectively) in two cores retrieved form the Atlantic and Indian sectors of the Antarctic Ocean. The two cores show the same isotopic patterns. The d13Cdiat values are depleted during glacial periods and enriched during interglacial periods, indicating lower productivity during cold times. The d15Ndiat values are enriched during glacial periods and depleted during interglacial periods, arguing for greater nitrate utilization during cold times. Taken at face value, this apparent contradiction leads to opposite conclusions on the role of the Southern Ocean biological pump on the atmospheric CO2 changes. However, the two sets of data can be reconciled by a "sea ice plus mixing rate scenario" that calls upon a balance between the effect of cutting off gas transfer at the ocean-atmosphere boundary and the effect of reducing vertical transport of nutrients through the pycnocline.
Resumo:
Differences in bioaccumulation of persistent organic pollutants (POPs) between fjords characterized by different water masses were investigated by comparing POP concentrations, patterns and bioaccumulation factors (BAFs) in seven species of zooplankton from Liefdefjorden (Arctic water mass) and Kongsfjorden (Atlantic water mass), Svalbard, Norway. No difference in concentrations and patterns of POPs was observed in seawater and POM; however higher concentrations and BAFs for certain POPs were found in species of zooplankton from Kongsfjorden. The same species were sampled in both fjords and the differences in concentrations of POPs and BAFs were most likely due to fjord specific characteristics, such as ice cover and timing of snow/glacier melt. These confounding factors make it difficult to conclude on water mass (Arctic vs. Atlantic) specific differences and further to extrapolate these results to possible climate change effects on accumulation of POPs in zooplankton. The present study suggests that zooplankton do biomagnify POPs, which is important for understanding contaminant uptake and flux in zooplankton, though consciousness regarding the method of evaluation is important.
Resumo:
Here we present orbitally-resolved records of terrestrial higher plant leaf wax input to the North Atlantic over the last 3.5 Ma, based on the accumulation of long-chain n-alkanes and n-alkanl-1-ols at IODP Site U1313. These lipids are a major component of dust, even in remote ocean areas, and have a predominantly aeolian origin in distal marine sediments. Our results demonstrate that around 2.7 million years ago (Ma), coinciding with the intensification of the Northern Hemisphere glaciation (NHG), the aeolian input of terrestrial material to the North Atlantic increased drastically. Since then, during every glacial the aeolian input of higher plant material was up to 30 times higher than during interglacials. The close correspondence between aeolian input to the North Atlantic and other dust records indicates a globally uniform response of dust sources to Quaternary climate variability, although the amplitude of variation differs among areas. We argue that the increased aeolian input at Site U1313 during glacials is predominantly related to the episodic appearance of continental ice sheets in North America and the associated strengthening of glaciogenic dust sources. Evolutional spectral analyses of the n-alkane records were therefore used to determine the dominant astronomical forcing in North American ice sheet advances. These results demonstrate that during the early Pleistocene North American ice sheet dynamics responded predominantly to variations in obliquity (41 ka), which argues against previous suggestions of precession-related variations in Northern Hemisphere ice sheets during the early Pleistocene.
Resumo:
Transfer of organic carbon (OC) from the terrestrial to the oceanic carbon pool is largely driven by riverine and aeolian transport. Before transport, however, terrigenous organic matter can be retained in intermediate terrestrial reservoirs such as soils. Using compound-specific radiocarbon analysis of terrigenous biomarkers their average terrestrial residence time can be evaluated. Here we show compound-specific radiocarbon (14C) ages of terrigenous biomarkers and bulk 14C ages accompanied by geochemical proxy data from core top samples collected along transects in front of several river mouths in the Black Sea. 14C ages of long chain n-alkanes, long chain n-fatty acids and total organic carbon (TOC) are highest in front of the river mouths, correlating well with BIT (branched and isoprenoid tetraether) indices, which indicates contribution of pre-aged, soil-derived terrigenous organic matter. The radiocarbon ages decrease further offshore towards locations where organic matter is dominated by marine production and aeolian input potentially contributes terrigenous organic matter. Average terrestrial residence times of vascular plant biomarkers deduced from n-C29+31 alkanes and n-C28+30 fatty acids ages from stations directly in front of the river mouths range from 900 ± 70 years to 4400 ± 170 years. These average residence times correlate with size and topography in climatically similar catchments, whereas the climatic regime appears to control continental carbon turnover times in morphologically similar drainage areas of the Black Sea catchment. Along-transect data imply petrogenic contribution of n-C29+31 alkanes and input via different terrigenous biomarker transport modes, i.e., riverine and aeolian, resulting in aged biomarkers at offshore core locations. Because n-C29+31 alkanes show contributions from petrogenic sources, n-C28+30 fatty acids likely provide better estimates of average terrestrial residence times of vascular plant biomarkers. Moreover, sedimentary n-C28 and n-C30 fatty acids appear clearly much less influenced by autochthonous sources than n-C24 and n-C26 fatty acids as indicated by increasing radiocarbon ages with increasing chain-length and are, thus, more representative as vascular plant biomarkers.