333 resultados para cusp flexure
Resumo:
OBJETIVO: o propósito do presente estudo é avaliar o limite de resistência à flexão de um protótipo de mini-implante desenvolvido para ancoragem do aparelho de Herbst. MÉTODOS: após a realização de um cálculo do tamanho da amostra, quatro corpos de prova contendo os protótipos de mini-implantes foram submetidos a uma força de flexão por engastamento simples, utilizando-se uma máquina universal de ensaios mecânicos, sendo calculado o limite de resistência à força de flexão. RESULTADOS: após os ensaios mecânicos, os novos mini-implantes apresentaram o limite de resistência à força de flexão de 98,2kgf, que foi o menor valor encontrado. CONCLUSÃO: os protótipos de mini-implantes desenvolvidos para ancoragem do aparelho de Herbst foram capazes de suportar forças de flexão maiores do que as forças de mordida descritas na literatura.
Resumo:
The selection criteria for Euler-Bernoulli or Timoshenko beam theories are generally given by means of some deterministic rule involving beam dimensions. The Euler-Bernoulli beam theory is used to model the behavior of flexure-dominated (or ""long"") beams. The Timoshenko theory applies for shear-dominated (or ""short"") beams. In the mid-length range, both theories should be equivalent, and some agreement between them would be expected. Indeed, it is shown in the paper that, for some mid-length beams, the deterministic displacement responses for the two theories agrees very well. However, the article points out that the behavior of the two beam models is radically different in terms of uncertainty propagation. In the paper, some beam parameters are modeled as parameterized stochastic processes. The two formulations are implemented and solved via a Monte Carlo-Galerkin scheme. It is shown that, for uncertain elasticity modulus, propagation of uncertainty to the displacement response is much larger for Timoshenko beams than for Euler-Bernoulli beams. On the other hand, propagation of the uncertainty for random beam height is much larger for Euler beam displacements. Hence, any reliability or risk analysis becomes completely dependent on the beam theory employed. The authors believe this is not widely acknowledged by the structural safety or stochastic mechanics communities. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this work, a new boundary element formulation for the analysis of plate-beam interaction is presented. This formulation uses a three nodal value boundary elements and each beam element is replaced by its actions on the plate, i.e., a distributed load and end of element forces. From the solution of the differential equation of a beam with linearly distributed load the plate-beam interaction tractions can be written as a function of the nodal values of the beam. With this transformation a final system of equation in the nodal values of displacements of plate boundary and beam nodes is obtained and from it, all unknowns of the plate-beam system are obtained. Many examples are analyzed and the results show an excellent agreement with those from the analytical solution and other numerical methods. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this paper is to provide and verify simplified models that predict the longitudinal stresses that develop in C-section purlins in uplift. The paper begins with the simple case of flexural stress: where the force has to be applied at the shear center, or the section braced in both flanges. Restrictions on load application point and restraint of the flanges are removed until arriving at the more complex problem of bending when movement of the tension flange alone is restricted, as commonly found in purlin-sheeting systems. Winter`s model for predicting the longitudinal stresses developed due to direct torsion is reviewed, verified, and then extended to cover the case of a bending member with tension flange restraint. The developed longitudinal stresses from flexure and restrained torsion are used to assess the elastic stability behavior of typical purlin-sheeting systems. Finally, strength predictions of typical C-section purlins are provided for existing AISI methods and a newly proposed extension to the direct strength method that employs the predicted longitudinal stress distributions within the strength prediction. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A large percentage of pile caps support only one column, and the pile caps in turn are supported by only a few piles. These are typically short and deep members with overall span-depth ratios of less than 1.5. Codes of practice do not provide uniform treatment for the design of these types of pile caps. These members have traditionally been designed as beams spanning between piles with the depth selected to avoid shear failures and the amount of longitudinal reinforcement selected to provide sufficient flexural capacity as calculated by the engineering beam theory. More recently, the strut-and-tie method has been used for the design of pile caps (disturbed or D-region) in which the load path is envisaged to be a three-dimensional truss, with compressive forces being supported by concrete compressive struts between the column and piles and tensile forces being carried by reinforcing steel located between piles. Both of these models have not provided uniform factors of safety against failure or been able to predict whether failure will occur by flexure (ductile mode) or shear (fragile mode). In this paper, an analytical model based on the strut-and-tie approach is presented. The proposed model has been calibrated using an extensive experimental database of pile caps subjected to compression and evaluated analytically for more complex loading conditions. It has been proven to be applicable across a broad range of test data and can predict the failures modes, cracking, yielding, and failure loads of four-pile caps with reasonable accuracy.
Resumo:
The six peculiar multicusped teeth described here were collected from sediments of the Upper Cretaceous of Sao Jose do Rio Preto Formation, near Ibira (northeastern Sao Paulo, Brazil). Their bulbous crowns are slightly labio-lingual compressed, and bear a main plus two accessory cusps, which conceal a well developed cingulum. Wear facets are seen on the main and distal accessory cusps. Comparison to the known Crocodyliformes with multicusped teeth show that the new material is not referable to ""protosuchians"" or eusuchians, nor related to two unnamed forms from Morocco and ""notosuchians"" such as Uruguaysuchus, Chiamaerasuchus, and Simosuchus. On the other hand, possible affinities with Candidodon and Malawisuchus were maintained based on shared traits. This includes teeth with the main cusp and some accessory cusps arranged in more than one axis, a previously defined unambiguous apomorphy of the putative clade composed of Candidodon plus Malawisuchus. The term Candidodontidae can be applied to this group, and defined as all taxa closer to Candidodon itapecuruensis than to Notosuchus terrestris, Uruguaysuchus aznarezi, Comahuesuchus brachybuccalis, Sphagesaurus huenei, Baurusuchus pachecoi, and Crocodylus niloticus. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this study is to characterize the structure of the beak of Toco Toucan (Ramphastos toco) and to investigate means for arresting fractures in the rhinotheca using acrylic resin. The structure of the rhamphastid bill has been described as a sandwich structured composite having a thin exterior comprised of keratin and a thick foam core constructed of mineralized collagenous rods (trabeculae). The keratinous rhamphotheca consists of superposed polygonal scales (approximately 50 pm in diameter and 1 mu m in thickness). In order to simulate the orientation of loading to which the beak is subjected during exertion of bite force, for example, we conducted flexure tests on the dorso-ventral axis of the maxilla. The initially intact (without induced fracture) beak fractured in the central portion when subjected to a force of 270 N, at a displacement of 23 mm. The location of this fracture served as a reference for the fractures induced in other beaks tested. The second beak was fractured and repaired by applying resin on both lateral surfaces. The repaired maxilla sustained a force of 70 N with 6.5 mm deflection. The third maxilla was repaired similarly except that it was conditioned in acid for 60s prior to fixation with resin. It resisted a force of up to 63 N at 6 mm of deflection. The experimental results were compared with finite element calculations for unfractured beak in bending configuration. The repaired specimens were found to have strength equal to only one third of the intact beak. Finite element simulations allow visualization of how the beak system (sandwich shell and cellular core) sustains high flexural strength. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The objective of this study was to evaluate duodenocecostomy in horses performed through a ventral midline laparotomy and report its influence oil body weight, glucose absorption, serum components, and characteristics of jejunum, cecum, and large colon histology. Four horses were submitted to the duodenocecostomy technique through a ventral midline laparotomy with animals in dorsal recumbency under inhalation anesthesia, followed by abdominal exploration. A side-to-side anastomosis was performed between the duodenojejunal flexure and the base of the cecum with two simple continuous suture lines of the serosal and muscular layers. The size of the opening created was approximately 2 cm in diameter. The mucosa layer was not Sutured. After 30 days, animals were submitted to a second laparotomy to check the patency of the duodenocaecal fistula. During both laparotomy procedures, excisional biopsies of different segments of the gastrointestinal tract were performed. Information on physical examination findings, results of hematologic and histopathologic evaluations, and oral glucose absorption test were recorded. The horses did not have significant weight loss from baseline, and absorption curve of glucose did not significantly vary from baseline. Only triglycerides had significant alterations. Histologic evaluation of jejunum, cecum, and large colon did not show alterations of intestinal structure and morphology. We concluded that the proposed technique, principally in relation to the fistula size and not suturing the mucosa layer, allowed partial or total Occlusion of the fistulae without the necessity of a second surgery and avoided the permanent bypass of ingesta and weight loss.
Resumo:
Objective. To determine the slow crack growth (SCG) and Weibull parameters of five dental ceramics: a vitreous porcelain (V), a leucite-based porcelain (D), a leucite-based glass-ceramic (E1), a lithium disilicate glass-ceramic (E2) and a glass-infiltrated alumina composite (IC). Methods. Eighty disks (empty set 12mm x 1.1mm thick) of each material were constructed according to manufacturers` recommendations and polished. The stress corrosion susceptibility coefficient (n) was obtained by dynamic fatigue test, and specimens were tested in biaxial flexure at five stress rates immersed in artificial saliva at 37 degrees C. Weibull parameters were calculated for the 30 specimens tested at 1MPa/s in artificial saliva at 37 degrees C. The 80 specimens were distributed as follows: 10 for each stress rate (10(-2), 10(-1), 10(1), 10(2) MPa/s), 10 for inert strength (10(2) MPa/s, silicon oil) and 30 for 10(0) MPa/s. Fractographic analysis was also performed to investigate the fracture origin. Results. E2 showed the lowest slow crack growth susceptibility coefficient (17.2), followed by D (20.4) and V (26.3). E1 and IC presented the highest n values (30.1 and 31.1, respectively). Porcelain V presented the lowest Weibull modulus (5.2). All other materials showed similar Weibull modulus values, ranging from 9.4 to 11.7. Fractographic analysis indicated that for porcelain D, glass-ceramics E1 and E2, and composite IC crack deflection was the main toughening mechanism. Significance. This study provides a detailed microstructural and slow crack growth characterization of widely used dental ceramics. This is important from a clinical standpoint to assist the clinician in choosing the best ceramic material for each situation as well as predicting its clinical longevity. It also can be helpful in developing new materials for dental prostheses. (c) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
The objective of this study was to evaluate the effect of the ion exchange treatment on the R-curve behavior of a leucite-reinforced dental porcelain, testing the hypothesis that the ion exchange is able to improve the R-curve behavior of the porcelain studied. Porcelain disks were sintered, finely polished, and submitted to an ion exchange treatment with a KNO(3) paste. The R-curve behavior was assessed by fracturing the specimens in a biaxial flexure design after making Vickers indentations in the center of the polished surface with loads of 1.8, 3.1, 4.9, 9.8, 31.4, and 49.0 N. The results showed that the ion exchange process resulted in significant improvements in terms of fracture toughness and flexural strength as compared to the untreated material. Nevertheless, the rising R-curve behavior previously observed in the control group disappeared after the ion exchange treatment, i.e., fracture toughness did not increase with the increase in crack size for the treated group.
Resumo:
Objective. To investigate the processing induced particle alignment on fracture behavior of four multiphase dental ceramics (one porcelain, two glass-ceramics and a glass-infiltrated-alumina composite). Methods. Disks (empty set12mm x 1.1 mm-thick) and bars (3 mm x 4 mm x 20 mm) of each material were processed according to manufacturer instructions, machined and polished. Fracture toughness (K(IC)) was determined by the indentation strength method using 3-point bending and biaxial flexure fixtures for the fracture of bars and disks, respectively. Microstructural and fractographic analyses were performed with scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Results. The isotropic microstructure of the porcelain and the leucite-based glass-ceramic resulted in similar fracture toughness values regardless of the specimen geometry. On the other hand, materials containing second-phase particles with high aspect ratio (lithium disilicate glass-ceramic and glass-infiltrated-alumina composite) showed lower fracture toughness for disk specimens compared to bars. For the lithium disilicate glass-ceramic disks, it was demonstrated that the occurrence of particle alignment during the heat-pressing procedure resulted in an unfavorable pattern that created weak microstructural paths during the biaxial test. For the glass-infiltrated-alumina composite, the microstructural analysis showed that the large alumina platelets tended to align their large surfaces perpendicularly to the direction of particle deposition during slip casting of green preforms. Significance. The fracture toughness of dental ceramics with anisotropic microstructure should be determined by means of biaxial testing, since it results in lower values. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives. To evaluate the effect of the microstructure on the Weibull and slow crack growth (SCG) parameters and on the lifetime of three ceramics used as framework materials for fixed partial dentures (FPDs) (YZ - Vita In-Ceram YZ; IZ - Vita In-Ceram Zirconia; AL - Vita In-Ceram AL) and of two veneering porcelains (VM7 and VM9). Methods. Bar-shaped specimens were fabricated according to the manufacturer`s instructions. Specimens were tested in three-point flexure in 37 degrees C artificial saliva. Weibull analysis (n = 30) and a constant stress-rate test (n = 10) were used to determine the Weibull modulus (m) and SCG coefficient (n), respectively. Microstructural and fractographic analyzes were performed using SEM. ANOVA and Tukey`s test (alpha = 0.05) were used to statistically analyze data obtained with both microstructural and fractographic analyzes. Results. YZ and AL presented high crystalline content and low porosity (0.1-0.2%). YZ had the highest characteristic strength (sigma(0)) value (911 MPa) followed by AL (488 MPa) and IZ (423 MPa). Lower sigma(0) values were observed for the porcelains (68-75 MPa). Except for IZ and VM7, m values were similar among the ceramic materials. Higher n values were found for YZ (76) and AL (72), followed by IZ (54) and the veneering materials (36-44). Lifetime predictions showed that YZ was the material with the best mechanical performance. The size of the critical flaw was similar among the framework materials (34-48 mu m) and among the porcelains (75-86 mu m). Significance. The microstructure influenced the mechanical and SCG behavior of the studied materials and, consequently, the lifetime predictions. (C) 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Background. Researchers have proposed the restoration of abfraction lesions, but limited information is available about the effects of occlusal loading on the margins of such restorations. Because abfraction is a well-recognized problem, the authors conducted a study to assess the effects of occlusal loading on the margins of cervical restorations. Methods. The authors prepared 40 wedge-shaped cavities in extracted premolars and restored them with a resin-based composite. They subjected specimens to occlusal loading (150 newtons, 101 cycles) on the buccal cusp, on the central fossa or on the lingual cusp, and they stored 1 the control group, specimens in deionized water. The authors used fluorescein to delimit marginal defects and evaluated the defects by using laser scanning confocal microscopy. Results. Results of chi(2) and Kruskal-Wallis tests (P < .05) showed that specimens subjected to occlusal loading had a higher percentage of marginal gaps (53.3 percent) than did the control specimens (10.0 percent). There were no differences between groups in marginal defect formation or in defect location, length or width. Conclusions. Occlusal loading led to a significant increase in gap formation at the margins of cervical resin-based composite restorations. Clinical Implications. The clinician cannot underestimate the effects of occlusal loading When restoring teeth with cervical wedge-shaped lesions. If occlusal loading is the main factor contributing to lesion formation, the clinician should identify and treat it before placing the restoration or otherwise run the risk that the restorative treatment will fail because of marginal gap formation.
Resumo:
Objective. The objective of this study was to investigate the prevalence of tooth abnormalities and soft tissue changes in patients with velocardiofacial syndrome. Study design. Twenty-six patients with velocardiofacial syndrome were examined to investigate the presence of tooth abnormalities and soft tissue alterations. The occurrence of tooth agenesis and supernumerary teeth was compared to patients without morphofunctional alterations, matched for gender and age. Results. Of all patients, 76.92% exhibited at least one tooth abnormality, with predominance of hypoplastic alterations, especially represented by hypodevelopment of the lingual cusp of mandibular first premolars and enamel opacities. The occurrence of tooth agenesis and supernumerary teeth was similar in both study and control groups. Conclusion. the present results suggest an association between hypodevelopment of the lingual cusp of mandibular first premolars and enamel opacities, yet these findings still require corroboration. Future studies should further investigate these aspects in larger samples compared to control groups, as well as employing molecular genetics techniques.
Resumo:
Introduction: The aim of this study was to investigate the prevalence of tooth wear in adolescents with Class II malocclusion, compared with those with normal occlusion. Methods: The sample consisted of dental casts obtained from 310 subjects, divided into 3 groups: group 1, 110 subjects with normal occlusion (mean age, 13.51 years); group 2, 100 complete Class II Division 1 patients (mean age, 13.44 years); and group 3, 100 half-cusp Class II Division 1 patients (mean age, 13.17 years). Dental wear was assessed by using a modified version of the tooth-wear index. The 3 groups were compared by means of the Kruskal-Wallis and Dunn tests, considering the frequency and the severity of wear on each surface of each group of teeth. The level of statistical significance was set at 5%. Results: The normal occlusion group had statistically greater tooth wear on the palatal surfaces of the maxillary central incisors and the incisal surfaces of the maxillary canines than the corresponding surfaces in both Class II malocclusion groups. The complete and half-cusp Class II Division 1 malocclusion groups had statistically greater tooth wear on the occlusal surfaces of the maxillary second premolar and first molar, the occlusal surfaces of the mandibular premolars, and the buccal surfaces of the mandibular posterior teeth compared with the normal occlusion group. The half-cusp Class II Division 1 malocclusion group had significantly greater tooth wear on the incisal surfaces of the mandibular incisors compared with the complete Class II Division 1 malocclusion group. Conclusions: Subjects with normal occlusion and complete or half-cusp Class II Division 1 malocclusions have different tooth-wear patterns. Tooth wear on the malocclusion subjects should not be considered pathologic but rather consequent to the different interocclusal tooth arrangement. (Am J Orthod Dentofacial Orthop 2010; 137: 14. e1-14.e7)