815 resultados para culture and science
Resumo:
Taking the Royal College of Barcelona (1760 -1843) as a case study this paper shows the development of modern surgery in Spain initiated by Bourbon Monarchy founding new kinds of institutions through their academic activities of spreading scientific knowledge. Antoni Gimbernat was the most famousinternationally recognised Spanish surgeon. He was trained as a surgeon at the Royal College of Surgery in Cadiz and was later appointed as professor of theAnatomy in the College of Barcelona. He then became Royal Surgeon of King Carlos IV and with that esteemed position in Madrid he worked resiliently to improve the quality of the Royal colleges in Spain. Learning human bodystructure by performing hands-on dissections in the anatomical theatre has become a fundamental element of modern medical education. Gimbernat favoured the study of natural sciences, the new chemistry of Lavoisier and experimental physics in the academic programs of surgery. According to the study of a very relevant set of documents preserved in the library, the so-called “juntas literarias”, among the main subjects debated in the clinical sessions was the concept of human beings and diseases in relation to the development of the new experimental sciences. These documents showed that chemistry andexperimental physics were considered crucial tools to understand the unexplained processes that occurred in the diseased and healthy human bodyand in a medico-surgical context. It is important to stress that through these manuscripts we can examine the role and the reception of the new sciences applied to healing arts.
Resumo:
The present work discusses the effects of university culture and structure on university-business relations, focusing on knowledge transfer activities. It puts forward the thesis that when links between university and business are introduced into the university system as a turn-key proposition rather than as developmental process, the prevailing university culture and structure will exert resistance against change and will oppose the creation of appropriate structures to promote them, with deleterious effects for the university.
Resumo:
Gray (1988) has put forward a hypothesis on how a national accountingenvironment might reflect the cultural dimensions identified by Hofstede (1980, 1983). A number of studies have tested Gray's hypothesis, including one by Pourjalali and Meek (1995) which identified a match between changes in cultural dimensions and the accounting environment in Iran following the revolution. In this paper we replicate this work in the context of Spain following the death of Franco in 1975 and the emergence of a democratic constitution in 1978. Specifically, we: 1) Consider Gray's hypothesis built on Hofstede's cultural dimensions and review some empirical tests of the hypotheses.2) Building on the work of Hofstede and Gray, we: put forward some hypotheses on how we would expect cultural dimensions to change in Spain with the transition to democracy.3) Review developments in accounting in Spain following the transition to democracy, in order to identify how well these fit with our hypotheses.
Resumo:
The objective of this study was to establish cell suspension culture and plant regeneration via somatic embryogenesis of a Brazilian plantain, cultivar Terra Maranhão, AAB. Immature male flowers were used as explant source for generating highly embryogenic cultures 45 days after inoculation, which were used for establishment of cell suspension culture and multiplication of secondary somatic embryos. Five semisolid culture media were tested for differentiation, maturation, somatic embryos germination and for plant regeneration. An average of 558 plants per one milliliter of 5% SCV (settled cell volume) were regenerated in the MS medium, with 11.4 µM indolacetic acid and 2.2 µM 6-benzylaminopurine. Regenerated plants showed a normal development, and no visible somaclonal variation was observed in vitro. It is possible to regenerate plants from cell suspensions of plantain banana cultivar Terra using MS medium supplemented with 11.4 µM of IAA and 2.2 µM of BAP.
Resumo:
The effects of the addition to sausage mix of tocopherols (200 mg/kg), a conventional starter culture with or without Staphylococcus carnosus, celery concentrate (CP) (0.23% and 0.46%), and two doses of nitrate (70 and 140 mg/kg expressed as NaNO(3)) on residual nitrate and nitrite amounts, instrumental CIE Lab color, tocol content, oxidative stability, and overall acceptability were studied in fermented dry-cured sausages after ripening and after storage. Nitrate doses were provided by nitrate-rich CP or a chemical grade source. The lower dose complies with the EU requirements governing the maximum for ingoing amounts in organic meat products. Tocopherol addition protected against oxidation, whereas the nitrate dose, nitrate source, or starter culture had little influence on secondary oxidation values. The residual nitrate and nitrite amounts found in the sausages with the lower nitrate dose were within EU-permitted limits for organic meat products and residual nitrate can be further reduced by the presence of the S. carnosus culture. Color measurements were not affected by the CP dose. Product consumer acceptability was not affected negatively by any of the factors studied. As the two nitrate sources behaved similarly for the parameters studied, CP is a useful alternative to chemical ingredients for organic dry-cured sausage production.
Resumo:
Temps de parole: 30 minutes
Resumo:
Bone engineering is a rapidly developing area of reconstructive medicine where bone inducing factors and/or cells are combined with a scaffold material to regenerate the structure and function of the original tissue. The aim of this study was to compare the suitability of different macroporous scaffold types for bone engineering applications. The two scaffold categories studied were a) the mechanically strong and stable titanium fiber meshes and b) the elastic and biodegradable porous polymers. Furthermore, bioactive modifications were applied to these basic scaffold types, and their effect on the osteogenic responses was evaluated in cell culture and ectopic bone formation studies. The osteogenic phenotype of cultured cell-scaffold constructs was heightened with a sol-gel derived titania coating, but not with a mixed titania-silica coating. The latter coating also resulted in delayed ectopic bone formation in bone marrow stromal cell seeded scaffolds. However, the better bone contact in early implantation times and more even bone tissue distribution at later times indicated enhanced osteoconductivity of both the coated scaffold types. Overall, the most promising bone engineering results were obtained with titania coated fiber meshes. Elastic and biodegradable poly(ε-caprolactone/D,L-lactide) based scaffolds were also developed in this study. The degradation rates of the scaffolds in vitro were governed by the hydrophilicity of the polymer matrix, and the porous architecture was controlled by the amount and type of porogen used. A continuous phase macroporosity was obtained using a novel CaCl2 • 6H2O porogen. Dynamic culture conditions increased cell invasion, but decreased cell numbers and osteogenicity, within the scaffolds. Osteogenic differentiation in static cultures and ectopic bone formation in cell seeded scaffolds were enhanced in composites, with 30 wt-% of bioactive glass filler.