991 resultados para crowdsourcing, urban-sensing, sensori android, database
Resumo:
Urban developments have exerted immense pressure on wetlands. Urban areas are normally centers of commercial activity and continue to attract migrants in large numbers in search of employment from different areas. As a result, habitations keep coming up in the natural areas / flood plains. This is happening in various Indian cities and towns and large habitations are coming up in low-lying areas, often encroaching even over drainage channels. In some cases, houses are constructed even on top of nallahs and drains. In the case of Kochi the situation is even worse as the base of the urban development itself stands on a completely reclaimed island. Also the topography and geology demanded more reclamation of land when the city developed as an agglomerative cluster. Cochin is a coastal settlement interspersed with a large backwater system and fringed on the eastern side by laterite-capped low hills from which a number of streams drain into the backwater system. The ridge line of the eastern low hills provides a welldefined watershed delimiting Cochin basin which help to confine the environmental parameters within a physical limit. This leads to an obvious conclusion that if physiography alone is considered, the western flatland is ideal for urban development. However it will result in serious environmental deterioration, as it comprises mainly of wetland and for availability of land there has to be large scale filling up of these wetlands which includes shallow mangrove-fringed water sheets, paddy fields, Pokkali fields, estuary etc.Chapter 1 School 4 of Environmental Studies The urban boundaries of Cochin are expanding fast with a consequent over-stretching of the existing fabric of basic amenities and services. Urbanisation leads to the transformation of agricultural land into built-up areas with the concomitant problems regarding water supply, drainage, garbage and sewage disposal etc. Many of the environmental problems of Cochin are hydrologic in origin; like water-logging / floods, sedimentation and pollution in the water bodies as well as shoreline erosion
Resumo:
Flooding is a major hazard in both rural and urban areas worldwide, but it is in urban areas that the impacts are most severe. An investigation of the ability of high resolution TerraSAR-X Synthetic Aperture Radar (SAR) data to detect flooded regions in urban areas is described. The study uses a TerraSAR-X image of a 1 in 150 year flood near Tewkesbury, UK, in 2007, for which contemporaneous aerial photography exists for validation. The DLR SAR End-To-End simulator (SETES) was used in conjunction with airborne scanning laser altimetry (LiDAR) data to estimate regions of the image in which water would not be visible due to shadow or layover caused by buildings and taller vegetation. A semi-automatic algorithm for the detection of floodwater in urban areas is described, together with its validation using the aerial photographs. 76% of the urban water pixels visible to TerraSAR-X were correctly detected, with an associated false positive rate of 25%. If all urban water pixels were considered, including those in shadow and layover regions, these figures fell to 58% and 19% respectively. The algorithm is aimed at producing urban flood extents with which to calibrate and validate urban flood inundation models, and these findings indicate that TerraSAR-X is capable of providing useful data for this purpose.
Resumo:
The development of an urban property in the Roman town of Calleva Atrebatum (Silchester, Hampshire, England) is traced from the late 1st to the mid-3rd century AD. Three successive periods of building with their associated finds of artefacts and biological remains are described and interpreted with provisional reconstructions of the buildings. Links are provided to a copy of the Integrated Archaeological Database (IADB), archived by the Archaeology Data Service, which holds the primary excavation and finds records.
Resumo:
A new digital atlas of the geomorphology of the Namib Sand Sea in southern Africa has been developed. This atlas incorporates a number of databases including a digital elevation model (ASTER and SRTM) and other remote sensing databases that cover climate (ERA-40) and vegetation (PAL and GIMMS). A map of dune types in the Namib Sand Sea has been derived from Landsat and CNES/SPOT imagery. The atlas also includes a collation of geochronometric dates, largely derived from luminescence techniques, and a bibliographic survey of the research literature on the geomorphology of the Namib dune system. Together these databases provide valuable information that can be used as a starting point for tackling important questions about the development of the Namib and other sand seas in the past, present and future.
Resumo:
A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and day-time even if cloud was present, could be a useful tool for operational flood relief management. The paper describes an automatic algorithm using high resolution Synthetic Aperture Radar (SAR) satellite data that builds on existing approaches, including the use of image segmentation techniques prior to object classification to cope with the very large number of pixels in these scenes. Flood detection in urban areas is guided by the flood extent derived in adjacent rural areas. The algorithm assumes that high resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, classifying 89% of flooded pixels correctly, with an associated false positive rate of 6%. Of the urban water pixels visible to TerraSAR-X, 75% were correctly detected, with a false positive rate of 24%. If all urban water pixels were considered, including those in shadow and layover regions, these figures fell to 57% and 18% respectively.
Resumo:
Flow along rivers, an integral part of many cities, might provide a key mechanism for ventilation – which is important for air quality and heat stress. Since the flow varies in space and time around rivers, there is limited utility in point measurements. Ground-based remote sensing offers the opportunity to study 3D flow in locations which are hard to observe. For three months in the winter and spring of 2011, the atmospheric flow above the River Thames in central London was observed using a scanning Doppler lidar, a dual-beam scintillometer and sonic anemometry. First, an inter-comparison showed that lidar-derived mean wind-speed estimates compare almost as well to sonic anemometers (root-mean-square error (rmse) 0.65–0.68 m s–1) as comparisons between sonic anemometers (0.35–0.73 m s–1). Second, the lidar duo-beam scanning strategy provided horizontal transects of wind vectors comparison with scintillometer rmse 1.12–1.63 m s–1) which revealed mean and turbulent flow across the river and surrounds; in particular: chanelling flow along the river and turbulence changes consistent with the roughness changes between built to river environments. The results have important consequences for air quality and dispersion around urban rivers, especially given that many cities have high traffic rates on bankside roads.
Resumo:
Very high-resolution Synthetic Aperture Radar sensors represent an alternative to aerial photography for delineating floods in built-up environments where flood risk is highest. However, even with currently available SAR image resolutions of 3 m and higher, signal returns from man-made structures hamper the accurate mapping of flooded areas. Enhanced image processing algorithms and a better exploitation of image archives are required to facilitate the use of microwave remote sensing data for monitoring flood dynamics in urban areas. In this study a hybrid methodology combining radiometric thresholding, region growing and change detection is introduced as an approach enabling the automated, objective and reliable flood extent extraction from very high-resolution urban SAR images. The method is based on the calibration of a statistical distribution of “open water” backscatter values inferred from SAR images of floods. SAR images acquired during dry conditions enable the identification of areas i) that are not “visible” to the sensor (i.e. regions affected by ‘layover’ and ‘shadow’) and ii) that systematically behave as specular reflectors (e.g. smooth tarmac, permanent water bodies). Change detection with respect to a pre- or post flood reference image thereby reduces over-detection of inundated areas. A case study of the July 2007 Severn River flood (UK) observed by the very high-resolution SAR sensor on board TerraSAR-X as well as airborne photography highlights advantages and limitations of the proposed method. We conclude that even though the fully automated SAR-based flood mapping technique overcomes some limitations of previous methods, further technological and methodological improvements are necessary for SAR-based flood detection in urban areas to match the flood mapping capability of high quality aerial photography.
Resumo:
Currently there are few observations of the urban wind field at heights other than rooftop level. Remote sensing instruments such as Doppler lidars provide wind speed data at many heights, which would be useful in determining wind loadings of tall buildings, and predicting local air quality. Studies comparing remote sensing with traditional anemometers carried out in flat, homogeneous terrain often use scan patterns which take several minutes. In an urban context the flow changes quickly in space and time, so faster scans are required to ensure little change in the flow over the scan period. We compare 3993 h of wind speed data collected using a three-beam Doppler lidar wind profiling method with data from a sonic anemometer (190 m). Both instruments are located in central London, UK; a highly built-up area. Based on wind profile measurements every 2 min, the uncertainty in the hourly mean wind speed due to the sampling frequency is 0.05–0.11 m s−1. The lidar tended to overestimate the wind speed by ≈0.5 m s−1 for wind speeds below 20 m s−1. Accuracy may be improved by increasing the scanning frequency of the lidar. This method is considered suitable for use in urban areas.
Resumo:
A better understanding of links between the properties of the urban environment and the exchange to the atmosphere is central to a wide range of applications. The numerous measurements of surface energy balance data in urban areas enable intercomparison of observed fluxes from distinct environments. This study analyzes a large database in two new ways. First, instead of normalizing fluxes using net all-wave radiation only the incoming radiative fluxes are used, to remove the surface attributes from the denominator. Second, because data are now available year-round, indices are developed to characterize the fraction of the surface (built; vegetation) actively engaged in energy exchanges. These account for shading patterns within city streets and seasonal changes in vegetation phenology; their impact on the partitioning of the incoming radiation is analyzed. Data from 19 sites in North America, Europe, Africa, and Asia (including 6-yr-long observation campaigns) are used to derive generalized surface–flux relations. The midday-period outgoing radiative fraction decreases with an increasing total active surface index, the stored energy fraction increases with an active built index, and the latent heat fraction increases with an active vegetated index. Parameterizations of these energy exchange ratios as a function of the surface indices [i.e., the Flux Ratio–Active Index Surface Exchange (FRAISE) scheme] are developed. These are used to define four urban zones that characterize energy partitioning on the basis of their active surface indices. An independent evaluation of FRAISE, using three additional sites from the Basel Urban Boundary Layer Experiment (BUBBLE), yields accurate predictions of the midday flux partitioning at each location.
Resumo:
The large scale urban consumption of energy (LUCY) model simulates all components of anthropogenic heat flux (QF) from the global to individual city scale at 2.5 × 2.5 arc-minute resolution. This includes a database of different working patterns and public holidays, vehicle use and energy consumption in each country. The databases can be edited to include specific diurnal and seasonal vehicle and energy consumption patterns, local holidays and flows of people within a city. If better information about individual cities is available within this (open-source) database, then the accuracy of this model can only improve, to provide the community data from global-scale climate modelling or the individual city scale in the future. The results show that QF varied widely through the year, through the day, between countries and urban areas. An assessment of the heat emissions estimated revealed that they are reasonably close to those produced by a global model and a number of small-scale city models, so results from LUCY can be used with a degree of confidence. From LUCY, the global mean urban QF has a diurnal range of 0.7–3.6 W m−2, and is greater on weekdays than weekends. The heat release from building is the largest contributor (89–96%), to heat emissions globally. Differences between months are greatest in the middle of the day (up to 1 W m−2 at 1 pm). December to February, the coldest months in the Northern Hemisphere, have the highest heat emissions. July and August are at the higher end. The least QF is emitted in May. The highest individual grid cell heat fluxes in urban areas were located in New York (577), Paris (261.5), Tokyo (178), San Francisco (173.6), Vancouver (119) and London (106.7). Copyright © 2010 Royal Meteorological Society
Resumo:
To optimise the placement of small wind turbines in urban areas a detailed understanding of the spatial variability of the wind resource is required. At present, due to a lack of observations, the NOABL wind speed database is frequently used to estimate the wind resource at a potential site. However, recent work has shown that this tends to overestimate the wind speed in urban areas. This paper suggests a method for adjusting the predictions of the NOABL in urban areas by considering the impact of the underlying surface on a neighbourhood scale. In which, the nature of the surface is characterised on a 1 km2 resolution using an urban morphology database. The model was then used to estimate the variability of the annual mean wind speed across Greater London at a height typical of current small wind turbine installations. Initial validation of the results suggests that the predicted wind speeds are considerably more accurate than the NOABL values. The derived wind map therefore currently provides the best opportunity to identify the neighbourhoods in Greater London at which small wind turbines yield their highest energy production. The model does not consider street scale processes, however previously derived scaling factors can be applied to relate the neighbourhood wind speed to a value at a specific rooftop site. The results showed that the wind speed predicted across London is relatively low, exceeding 4 ms-1 at only 27% of the neighbourhoods in the city. Of these sites less than 10% are within 10 km of the city centre, with the majority over 20 km from the city centre. Consequently, it is predicted that small wind turbines tend to perform better towards the outskirts of the city, therefore for cities which fit the Burgess concentric ring model, such as Greater London, ‘distance from city centre’ is a useful parameter for siting small wind turbines. However, there are a number of neighbourhoods close to the city centre at which the wind speed is relatively high and these sites can only been identified with a detailed representation of the urban surface, such as that developed in this study.
Resumo:
To bridge the gaps between traditional mesoscale modelling and microscale modelling, the National Center for Atmospheric Research, in collaboration with other agencies and research groups, has developed an integrated urban modelling system coupled to the weather research and forecasting (WRF) model as a community tool to address urban environmental issues. The core of this WRF/urban modelling system consists of the following: (1) three methods with different degrees of freedom to parameterize urban surface processes, ranging from a simple bulk parameterization to a sophisticated multi-layer urban canopy model with an indoor–outdoor exchange sub-model that directly interacts with the atmospheric boundary layer, (2) coupling to fine-scale computational fluid dynamic Reynolds-averaged Navier–Stokes and Large-Eddy simulation models for transport and dispersion (T&D) applications, (3) procedures to incorporate high-resolution urban land use, building morphology, and anthropogenic heating data using the National Urban Database and Access Portal Tool (NUDAPT), and (4) an urbanized high-resolution land data assimilation system. This paper provides an overview of this modelling system; addresses the daunting challenges of initializing the coupled WRF/urban model and of specifying the potentially vast number of parameters required to execute the WRF/urban model; explores the model sensitivity to these urban parameters; and evaluates the ability of WRF/urban to capture urban heat islands, complex boundary-layer structures aloft, and urban plume T&D for several major metropolitan regions. Recent applications of this modelling system illustrate its promising utility, as a regional climate-modelling tool, to investigate impacts of future urbanization on regional meteorological conditions and on air quality under future climate change scenarios. Copyright © 2010 Royal Meteorological Society
Resumo:
Urbanization related alterations to the surface energy balance impact urban warming (‘heat islands’), the growth of the boundary layer, and many other biophysical processes. Traditionally, in situ heat flux measures have been used to quantify such processes, but these typically represent only a small local-scale area within the heterogeneous urban environment. For this reason, remote sensing approaches are very attractive for elucidating more spatially representative information. Here we use hyperspectral imagery from a new airborne sensor, the Operative Modular Imaging Spectrometer (OMIS), along with a survey map and meteorological data, to derive the land cover information and surface parameters required to map spatial variations in turbulent sensible heat flux (QH). The results from two spatially-explicit flux retrieval methods which use contrasting approaches and, to a large degree, different input data are compared for a central urban area of Shanghai, China: (1) the Local-scale Urban Meteorological Parameterization Scheme (LUMPS) and (2) an Aerodynamic Resistance Method (ARM). Sensible heat fluxes are determined at the full 6 m spatial resolution of the OMIS sensor, and at lower resolutions via pixel aggregation and spatial averaging. At the 6 m spatial resolution, the sensible heat flux of rooftop dominated pixels exceeds that of roads, water and vegetated areas, with values peaking at ∼ 350 W m− 2, whilst the storage heat flux is greatest for road dominated pixels (peaking at around 420 W m− 2). We investigate the use of both OMIS-derived land surface temperatures made using a Temperature–Emissivity Separation (TES) approach, and land surface temperatures estimated from air temperature measures. Sensible heat flux differences from the two approaches over the entire 2 × 2 km study area are less than 30 W m− 2, suggesting that methods employing either strategy maybe practica1 when operated using low spatial resolution (e.g. 1 km) data. Due to the differing methodologies, direct comparisons between results obtained with the LUMPS and ARM methods are most sensibly made at reduced spatial scales. At 30 m spatial resolution, both approaches produce similar results, with the smallest difference being less than 15 W m− 2 in mean QH averaged over the entire study area. This is encouraging given the differing architecture and data requirements of the LUMPS and ARM methods. Furthermore, in terms of mean study QH, the results obtained by averaging the original 6 m spatial resolution LUMPS-derived QH values to 30 and 90 m spatial resolution are within ∼ 5 W m− 2 of those derived from averaging the original surface parameter maps prior to input into LUMPS, suggesting that that use of much lower spatial resolution spaceborne imagery data, for example from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is likely to be a practical solution for heat flux determination in urban areas.
Resumo:
Recent developments to the Local-scale Urban Meteorological Parameterization Scheme (LUMPS), a simple model able to simulate the urban energy balance, are presented. The major development is the coupling of LUMPS to the Net All-Wave Radiation Parameterization (NARP). Other enhancements include that the model now accounts for the changing availability of water at the surface, seasonal variations of active vegetation, and the anthropogenic heat flux, while maintaining the need for only commonly available meteorological observations and basic surface characteristics. The incoming component of the longwave radiation (L↓) in NARP is improved through a simple relation derived using cloud cover observations from a ceilometer collected in central London, England. The new L↓ formulation is evaluated with two independent multiyear datasets (Łódź, Poland, and Baltimore, Maryland) and compared with alternatives that include the original NARP and a simpler one using the National Climatic Data Center cloud observation database as input. The performance for the surface energy balance fluxes is assessed using a 2-yr dataset (Łódź). Results have an overall RMSE < 34 W m−2 for all surface energy balance fluxes over the 2-yr period when