910 resultados para couro wet blue
Resumo:
Leaking urine Is frequently mentioned (anecdotally) by women as a barrier to physical activity. The aim of this paper was to use results from the Australian Longitudinal Study on Women's Health (ALSWH) to explore the prevalence of leaking urine in Australian women, and to ascertain whether leaking urine might be a barrier to participation for women. More than 41,000 women participated in the baseline surveys of the ALSWH in 1996. More than one third of the mid-age (45-50 years) and older (70-75) women and 13% of the young women (18-23) reported leaking urine. There was a cross-sectional association between leaking urine and physical activity, such that women with more frequent urinary leakage were also more likely to report low levels of physical activity. More than one thousand of those who reported leaking urine at baseline participated in a follow-up study in 1999. Of these, more than 40% of the mid-age women (who were aged 48-53 in 1999), and one in seven of the younger (21-26 years) and older (73-79 years) women reported leaking urine during sport or exercise. More than one third of the mid-age women and more than one quarter of the older women, but only 7% of the younger women said they avoided sporting activities because of leaking urine. The data are highly suggestive that leaking urine may be a barrier to physical activity, especially among mid-age women. As current estimates suggest that fewer than half of all Australian women are adequately active for health benefit, health professionals could be more proactive in raising this issue with women and offering help through non-invasive strategies such as pelvic floor muscle exercises.
Resumo:
This study investigates binder distribution in wet granulation and focuses on the nucleation zone, which is the area where the liquid binder and powder surface come into contact and form the initial nuclei. An equipment independent parameter, dimensionless spray flux Psi (a), is defined to characterise the most important process parameters in the nucleation process: solution flowrate, powder flux, and binder drop size. Ex-granulator experiments are used to study the relationship between dimensionless spray flux, process variables and the coverage of binder fluid on the powder surface. Lactose monohydrate powder on a variable speed riffler passed under a flat spray once only. Water and 7% HPC solution at two spray pressures were used as binders. Experiments with red dye and image analysis demonstrate that changes in dimensionless spray flux correlate with a measurable difference in powder surface coverage. Nucleation experiments show that spray flux controls the size and shape of the nuclei size distribution. At low Psi (a), the system operates in the drop controlled regime, where one drop forms one nucleus and the nuclei size distribution is narrow. At higher Psi (a), the powder surface cakes creating a broader size distribution. For controlled nucleation with the narrowest possible size distribution, it is recommended that the dimensionless spray flux be less than 0.1 to be in the drop-controlled regime. (C) 2001 Elsevier Science S.A. All rights reserved.
Resumo:
Wet agglomeration processes have traditionally been considered an empirical art, with great difficulties in predicting and explaining observed behaviour. Industry has faced a range of problems including large recycle ratios, poor product quality control, surging and even the total failure of scale up from laboratory to full scale production. However, in recent years there has been a rapid advancement in our understanding of the fundamental processes that control granulation behaviour and product properties. This review critically evaluates the current understanding of the three key areas of wet granulation processes: wetting and nucleation, consolidation and growth, and breakage and attrition. Particular emphasis is placed on the fact that there now exist theoretical models which predict or explain the majority of experimentally observed behaviour. Provided that the correct material properties and operating parameters are known, it is now possible to make useful predictions about how a material will granulate. The challenge that now faces us is to transfer these theoretical developments into industrial practice. Standard, reliable methods need to be developed to measure the formulation properties that control granulation behaviour, such as contact angle and dynamic yield strength. There also needs to be a better understanding of the flow patterns, mixing behaviour and impact velocities in different types of granulation equipment. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
This paper reports a study in the wet tropics of Queensland on the fate of urea applied to a dry or wet soil surface under banana plants. The transformations of urea were followed in cylindrical microplots (10.3 cm diameter x 23 cm long), a nitrogen (N) balance was conducted in macroplots (3.85 m x 2.0 m) with N-15 labelled urea, and ammonia volatilization was determined with a mass balance micrometeorological method. Most of the urea was hydrolysed within 4 days irrespective of whether the urea was applied onto dry or wet soil. The nitrification rate was slow at the beginning when the soil was dry, but increased greatly after small amounts of rain; in the 9 days after rain 20% of the N applied was converted to nitrate. In the 40 days between urea application and harvesting, the macroplots the banana plants absorbed only 15% of the applied N; at harvest the largest amounts were found in the leaves (3.4%), pseudostem (3.3%) and fruit (2.8%). Only 1% of the applied N was present in the roots. Sixty percent of the applied N was recovered in the soil and 25% was lost from the plant-soil system by either ammonia volatilization, leaching or denitrification. Direct measurements of ammonia volatilization showed that when urea was applied to dry soil, and only small amounts of rain were received, little ammonia was lost (3.2% of applied N). In contrast, when urea was applied onto wet soil, urea hydrolysis occurred immediately, ammonia was volatilized on day zero, and 17.2% of the applied N was lost by the ninth day after that application. In the latter study, although rain fell every day, the extensive canopy of banana plants reduced the rainfall reaching the fertilized area under the bananas to less than half. Thus even though 90 mm of rain fell during the volatilization study, the fertilized area did not receive sufficient water to wash the urea into the soil and prevent ammonia loss. Losses by leaching and denitrification combined amounted to 5% of the applied N.
Resumo:
The cytochrome P450 (P450) enzymes involved in drug metabolism are among the most versatile biological catalysts known. A small number of discrete forms of human P450 are capable of catalyzing the monooxygenation of a practically unlimited variety of xenobiotic substrates, with each enzyme showing a more or less wide and overlapping substrate range. This versatility makes P450s ideally suited as starting materials for engineering designer catalysts for industrial applications. In the course of heterologous expression of P450s in bacteria, we observed the unexpected formation of blue pigments. Although this was initially assumed to be an artifact, subsequent work led to the discovery of a new function of P450s in intermediary metabolism and toxicology, new screens for protein engineering, and potential applications in the dye and horticulture industries.
Resumo:
This study examines the level and pattern of endemism among 274 flightless rainforest insects found in the Wet Tropics region of Australia. Endemism is measured at two nested scales: (1) those confined to the Wet Tropics, termed 'regional endemics'; and (2) the subset of those species confined to a single subregion of the Wet Tropics, termed 'subregional endemics'. Fifty per cent of the regional endemic flightless insects are also subregional endemics compared with 15% of the known regional endemic vertebrates. The four subregions with the most endemic flightless insect species are the uplands of Mt Finnigan, Carbine, Bellenden-Ker/Bartle Frere and Atherton. Multiple regression suggests that the combination of rainforest area and shape explain the most variance (R-2 = 0.603) in the numbers of species of regional endemic insects. However, subregional endemism is not closely correlated with the size or shape of the subregions in which they occur, or a combination of these factors. Candidate refugial and recolonised subregions are identified, and are consistent with data from palaeoclimatic models and refugia identified using other taxa. We group upland subregions into larger areas of endemism using parsimony analysis of endemism. These groupings are consistent with our understanding of the history of the Wet Tropics rainforests.
Resumo:
Comparative phylogeography has proved useful for investigating biological responses to past climate change and is strongest when combined with extrinsic hypotheses derived from the fossil record or geology. However, the rarity of species with sufficient, spatially explicit fossil evidence restricts the application of this method. Here, we develop an alternative approach in which spatial models of predicted species distributions under serial paleoclimates are compared with a molecular phylogeography, in this case for a snail endemic to the rainforests of North Queensland, Australia. We also compare the phylogeography of the snail to those from several endemic vertebrates and use consilience across all of these approaches to enhance biogeographical inference for this rainforest fauna. The snail mtDNA phylogeography is consistent with predictions from paleoclimate modeling in relation to the location and size of climatic refugia through the late Pleistocene-Holocene and broad patterns of extinction and recolonization. There is general agreement between quantitative estimates of population expansion from sequence data (using likelihood and coalescent methods) vs. distributional modeling. The snail phylogeography represents a composite of both common and idiosyncratic patterns seen among vertebrates, reflecting the geographically finer scale of persistence and subdivision in the snail. In general, this multifaceted approach, combining spatially explicit paleoclimatological models and comparative phylogeography, provides a powerful approach to locating historical refugia and understanding species' responses to them.
Resumo:
A field study was conducted to investigate the fate of N-15-labelled nitrate applied at 20 kg N ha(-1) in a wet summer to microplots installed in areas under different residue management regimes in second-rotation hoop pine (Araucaria cunninghamii) plantations aged 1-3 years in south-east Queensland, Australia. PVC microplots of 235 mm diameter and 300 mm long were driven into 250 mm soil. There were three replications of each of eight treatments. These were areas just under and between 1-year-old windrows (ca. 2-3 m in width) of harvesting residues spaced 15 m apart, and with and without incorporated foliage residues (20 t DM ha(-1)); the areas just under and between 2- or 3-year-old windrows spaced 10 m apart. Only 7-29% of the added N-15 was recovered from the top 750 mm of the soil profile with the leaching loss estimated to be 70-86% over the 34-day period. The N-15 loss via denitrification was 3.7-6.3% by directly measuring the N-15 gases emitted. The microplots with the incorporated residues at the 1-year-old site had the highest N-15 loss (6.3%) as compared with the other treatments. The N-15 mass balance method together with the use of bromide (Br) tracer applied at 100 kg Br ha(-1) failed to obtain a reliable estimate of the denitrification loss. The microplots at the 1-year-old site had higher N-15 immobilisation rate (7.5-24.7%) compared with those at 2- and 3-year-old sites (2.1-3.6%). Incorporating the residues resulted in an increase in N-15 immobilisation rate (24.5-24.7%) compared with the control without the incorporated residues (8.4-14.3%). These findings suggest that climatic conditions played important roles in controlling the N-15 transformations in the wet summer season and that the residue management regimes could also significantly influence the N-15 transformations. Most of the N-15 loss occurred through leaching, but a considerable amount of the N-15 was lost through denitrification. Bromide proved to be an unsuitable tracer for monitoring the N-15 leaching and movement under the wet summer conditions. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
This paper tests the four-phase heuristic model of change in resource management regimes developed by Gunderson et al. (1995. In: Barriers and Bridges to the Renewal of Ecosystems and Institutions. Columbia University Press, New York, pp. 489-533) by applying it to a case analysis of rainforest management in northeastern Australia. The model suggests that resource management regimes change in four phases: (i) crisis caused by external factors, (ii) a search for alternative management solutions, (iii) creation of a new management regime, and (iv) bureaucratic implementation of the new arrangements. The history of human use arid management of the tropical forests of this region is described and applied to this model. The ensuing analysis demonstrates that: (i) resource management tends to be characterized by a series of distinct eras; (ii) changes to management regimes are precipitated by crisis; and (iii) change is externally generated. The paper concludes by arguing that this theoretical perspective oil institutional change in resource management systems has wider utility. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Little is known about causes of endemic rarity in plants. This study pioneered an approach that determined environmental variables in the rainforest habitat and generated physiological profiles for light, water, and nutrient relations for three endemically restricted versus widespread congeneric species' pairs. We found no overall consistent differences in the physiological variables between the group of restricted species and the group of widespread species, and congeneric species pairs were therefore examined individually. Availability of soil nutrients did not differ between restricted-widespread species sites suggesting that species grow under comparable nutrient conditions. Under ambient and manipulated higher light conditions, widespread Gardenia ovularis had a greater photosynthetic activity than restricted Gardenia actinocarpa suggesting that the two species differ in their photosynthetic abilities. Differences between Xanthostemon species included lower photosynthetic activity, higher transpiration rate, and a higher foliar manganese concentration in restricted Xanthostemon formosus compared to widespread Xanthostemon chrysanthus. It is suggested that X. formosus is restricted by its high water use to its current rainforest creek edge habitat, while X. chrysanthus grows in a range of environments, although naturally found in riparian rainforest. Restricted Archidendron kanisii had higher electron transport rates, greater dissipative capacity for removal of excess light, and more efficient investment of nitrogen into photosynthetic components, than its widespread relative Archidendron whitei. These observations and previous research suggest that restricted Archidendron kanisii is in the process of expanding its range. Physiological profiles suggest a different cause of rarity for each species. This has implications for the conservation strategies required for each species. (C) 2002 Elsevier Science Ltd. All rights reserved.