976 resultados para coupled-cluster theory
Resumo:
The Raman scattering study of vibrational modes and hole concentration in a ferromagnetic semiconductor Ga1-xMnxSb grown by Mn ion implantation, deposition and post-annealing has been presented. The experiments are performed both in implanted and unimplanted regions before and after etching the samples. The Raman spectra measured from the unimplanted region show only GaSb-like phonon modes. On the other hand, the spectra measured from the implanted region show additional phonon modes approximately at 115, 152, 269, 437 and 659 cm(-1). The experimental results demonstrate that the extra modes are associated with surface defects, crystal disorder and blackish layer that is formed due to Mn ion implantation, deposition and annealing processes. Furthermore, we have determined the hole concentration as a function of laser probing position by modeling the Raman spectra using coupled mode theory. The contributions of GaSb-like phonon modes and coupled LO-phonon plasmon mode are taken into consideration in the model. The hole-concentration-dependent CLOPM is resolved in the spectra measured from the implanted and nearby implanted regions. The hole concentrations determined by Raman scattering are found to be in good agreement with those measured by the electrochemical capacitance-voltage technique.
Resumo:
In this paper, identical dual-wavelength fiber Bragg, gratings (FBGs) are theoretically proposed and experimentally demonstrated. On the assistance of the Fourier theory, the gratings with symmetrical spectrum are designed in the case of weak refractive-index modulations. With the. perturbation technique, the results achieved in the previous step are modified to meet the strong refractive-index modulation gratings. Based on the coupled-mode theory, we have optimized and achieved the identical dual-wavelength FBGs with two channels that have equal bandwidth and even strength. We have also experimentally demonstrated the proposed FBGs, and the experimental results are compared with theoretical predictions with good agreement.
Resumo:
We demonstrate surface emitting distributed feedback quantum cascade lasers emitting at wavelengths from 8.1 mu m at 90 K to 8.4 mu m at 210 K. The second-order metalized grating is carefully designed using a modified coupled-mode theory and fabricated by contact lithography. The devices show single mode behavior with a side mode suppression ratio above 18 dB at all working temperatures. At 90 K, the device emits an optical power of 101 mW from the surface and 199 mW from the edge. In addition, a double-lobe far-field pattern with a separation of 2.2 degrees is obtained in the direction along the waveguide.
Resumo:
The reaction mechanism of the Pd(0)-catalyzed alkyne cyanothiolation reaction is investigated by MP2, CCSD(T) and the density functional method B3LYP. The overall reaction mechanism is examined. The B3LYP results are consistent with the results of CCSD(T) and MP2 methods for the isomerization, acetylene insertion and reductive elimination steps, but not for the oxidative addition step. For the oxidative addition, the bisphosphine and monophosphine pathways are competitive in B3LYP, while the bisphosphine one is preferred for CCSD(T) and MP2 methods.
Resumo:
The present calculations were performed on the basis of the Sanchez-Lacombe lattice fluid theory and the new combinatorial rules for block copolymer according to the experimental results on the pressure-induced compatibility in poly(ethylene oxide) (PEO) and poly(ethylene oxide-b-dimethylsiloxane) (P(EO-b-DMS)) mixtures with UCST behavior. The study on enthalpy, combinatorial entropy, vacancy entropy and Gibbs energy upon mixture shows that Sanchez-Lacombe fluid theory and the new combinatorial rules could describe the pressure-induced compatibility (PIC) of polymer mixtures with UCST behavior well.
Resumo:
Environmental governance is more effective when the scales of ecological processes are well matched with the human institutions charged with managing human-environment interactions. The social-ecological systems (SESs) framework provides guidance on how to assess the social and ecological dimensions that contribute to sustainable resource use and management, but rarely if ever has been operationalized for multiple localities in a spatially explicit, quantitative manner. Here, we use the case of small-scale fisheries in Baja California Sur, Mexico, to identify distinct SES regions and test key aspects of coupled SESs theory. Regions that exhibit greater potential for social-ecological sustainability in one dimension do not necessarily exhibit it in others, highlighting the importance of integrative, coupled system analyses when implementing spatial planning and other ecosystem-based strategies.
Resumo:
The equilibrium structure of acetylene (also named ethyne) has been reinvestigated to resolve the small discrepancies noted between different determinations. The size of the system as well as the large amount of available experimental data provides the quite unique opportunity to check the magnitude and relevance of various contributions to equilibrium structure as well as to verify the accuracy of experimental results. With respect to pure theoretical investigation, quantum-chemical calculations at the coupled-cluster level have been employed together with extrapolation to the basis set limit, consideration of higher excitations in the cluster operator, inclusion of core correlation effects as well as relativistic and diagonal Born-Oppenheimer corrections. In particular, it is found that the extrapolation to the complete basis set limit, the inclusion of higher excitations in the electronic-correlation treatment and the relativistic corrections are of the same order of magnitude. It also appears that a basis set as large as a core-valence quintuple-zeta set is required for accurately accounting for the inner-shell correlation contribution. From a pure experimental point of view, the equilibrium structure has been determined using very accurate rotational constants recently obtained by a global analysis (that is to say that all non-negligible interactions are explicitely included in the Hamiltonian matrix) of rovibrational spectra. Finally, a semi-experimental equilibrium structure (where the equilibrium rotational constants are obtained from the experimental ground state rotational constants and computed rovibrational corrections) has been obtained from the available experimental ground-state rotational constants for ten isotopic species corrected for computed vibrational corrections. Such a determination led to the revision of the ground-state rotational constants of two isotopologues, thus showing that structural determination is a good method to identify errors in experimental rotational constants. The three structures are found in a very good agreement, and our recommended values are rCC 120.2958(7) pm and rCH 106.164(1) pm. © 2011 American Institute of Physics.
Resumo:
We report rigorous calculations of rovibrational energies and dipole transition intensities for three molecules using a new version of the code MULTIMODE. The key features of this code which permit, for the first time, such calculations for moderately sized but otherwise general polyatomic molecules are briefly described. Calculations for the triatomic molecule BF(2) are done to validate the code. New calculations for H(2)CO and H(2)CS are reported; these make use of semiempirical potentials but ab initio dipole moment surfaces. The new dipole surface for H(2)CO is a full-dimensional fit to the dipole moment obtained with the coupled-cluster with single and double excitations and a perturbative treatment of triple excitations method with the augmented correlation consistent triple zeta basis set. Detailed comparisons are made with experimental results from a fit to relative data for H(2)CS and absolute intensities from the HITRAN database for H(2)CO.
Resumo:
The vibrational-rotational energy levels of aluminum monohydroxide in its electronic ground state, (A) over tilde (1)A' AlOH, have been predicted using the variational method. The potential energy surface of the (X) over tilde (1)A' ground state of AlOH was determined employing the ab initio coupled cluster method with single, double, and perturbative triple excitations [CCSD(T)] and the correlation-consistent polarized valence quadruple zeta (cc-pVQZ) basis set. Low-lying J= 0 and J= 1 vibrational levels are reported. These are analyzed in terms of the quasilinearity of the molecule. Coriolis effects are shown to be significant. We hope that our predictions will be of value in the future when assigning rovibrational transitions in spectroscopic studies. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Using coupled-cluster approach full six-dimensional analytic potential energy surfaces for two cyclic SiC3 isomers [C-C transannular bond (I) and Si-C transannular bond (II)] have been generated and used to calculate anharmonic vibrational wave functions. Several strong low-lying anharmonic resonances have been found. In both isomers already some of the fundamental transitions cannot be described within the harmonic approximation. Adiabatic electron affinities and ionization energies have been calculated as well. The Franck-Condon factors for the photodetachment processes c-SiC3-(I)-> c-SiC3(I) and c-SiC3-(II)-> c-SiC3(II) are reported. (c) 2006 American Institute of Physics.
Resumo:
A full dimensional, ab initio-based semiglobal potential energy surface for C2H3+ is reported. The ab initio electronic energies for this molecule are calculated using the spin-restricted, coupled cluster method restricted to single and double excitations with triples corrections [RCCSD(T)]. The RCCSD(T) method is used with the correlation-consistent polarized valence triple-zeta basis augmented with diffuse functions (aug-cc-pVTZ). The ab initio potential energy surface is represented by a many-body (cluster) expansion, each term of which uses functions that are fully invariant under permutations of like nuclei. The fitted potential energy surface is validated by comparing normal mode frequencies at the global minimum and secondary minimum with previous and new direct ab initio frequencies. The potential surface is used in vibrational analysis using the "single-reference" and "reaction-path" versions of the code MULTIMODE. (c) 2006 American Institute of Physics.
Resumo:
Raman activities and degrees of depolarization are reported for 14 complexes involving methanol, ethanol and water using the MP2/aug-cc-pVDZ model. For ethanol both trans and gauche isomers are considered. The red-shifts of the OH stretching and the blue shifts of the bending tau(CO-OH) mode were analyzed for the proton-donor molecules upon hydrogen bond. The shift of the nu(CO) stretching mode of the alcohol molecules are also analyzed and found to be specific giving characterization of the amphoteric relation, being positive for the proton-acceptor and negative for the proton-donor molecule. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
We have investigated the polyoxides HOOH, HOOOH, HOOOOH, and HOOO employing the CCSD(T) methodology, and the correlation consistent basis sets. For all molecules, we have computed fundamental vibrational frequencies, structural parameters, rotational constants, and rotation-vibration corrections. For HOOOH, we have obtained a good agreement between our results and microwave and infrared spectra measurements, although for the symmetric OO stretch some important differences were found. Heats of formation were computed using atomization energies, and our recommendation is as follows: Delta H degrees(f,298)(HOOOH) = -21.50 kcal/mol and Delta H degrees(f,298)(HOOOOH) = -10.61 kcal/mol. In the case of HOOO, to estimate the heat of formation, we have constructed three isodesmic reactions to cancel high order correlation effects. The results obtained confirmed that the latter effects are very important for HOOO. The new Delta H degrees(f,298)(HOOO) obtained is 5.5 kcal/mol. We have also calculated the zero-point energies of DO and DOOO to correct the experimental lower limit determined for the Delta H degrees(f,298)(HOOO). The Delta(Delta ZPE) decreases the binding energy of HOOO by 0.56 kcal/mol. Employing the latter value, the new experimental lower limit for Delta H degrees(f,298)(HOOO) is 3.07 kcal/mol, just 2.4 kcal/mol lower than our determination. We expect that the fundamental vibrational frequencies and rotational constants determined for HOOOOH and DOOOOD contribute to its identification in the gas phase. The vibrational spectrum of HOOOOH shows some overlapping with that of HOOOH thus indicating that one may encounter some difficulties in its characterization. We discuss the consequences of the thermochemical properties determined in this work, and suggest that the amount of HOOO present in the atmosphere is smaller than that proposed recently in this journal (J. Phys. Chem A 2007, 111, 4727).
Resumo:
This work reports a state-of-the-art theoretical characterization of four new sulfur-bromine species and five transition states on the [H, S(2), Br] potential energy surface. Our highest level theoretical approach employed the method coupled cluster singles and doubles with perturbative contributions of connected triples, CCSD(T), along with the series of correlation-consistent basis sets and with extrapolation to the complete basis set (CBS) limit in the optimization of the geometrical parameters and to quantify the energetic quantities. The structural and vibrational frequencies here reported are unique and represent the most accurate investigation to date of these species. The global minimum corresponds to a skewed structure HSSBr with a disulfide bond; this is followed by a pyramidal-like structure, SSHBr, 18.85 kcal/mol above the minimum. Much higher in energy, we found another skewed structure, HSBrS (50.29 kcal/mol), with one S-Br dative-type bond, and another pyramidal-like one, HBrSS (109.80 kcal/mol), with two S-Br dative-type bonds. The interconversion of HSSBr into SSHBr can occur via a transfer of either the hydrogen or the bromine atom but involves a very high barrier of about 43 kcal/mol. These molecules are potentially a new route of coupling the sulfur and bromine chemistry in the atmosphere, and conditions of high concentration of H(2)S like in volcanic eruptions might contribute to their formation. We note that HSSBr can act as a reservoir molecule for the reaction between the radicals HSS and Br. Also, an assessment of the methods DFT/B3LYP/CBS and MP2/CBS relative to CCSD(T)/CBS provides insights on the expected performance of these methods on the characterization of polysulfides and also of more complex systems containing disulfide bridges.
Resumo:
When the electro-optic and acousto-optic effects are combined into a single device, the resulting acousto-electro-optic (AEO) modulator shows improved flexibility to overcome some limitations of the individual modulators or their cascade combinations. By using optical interferometry, it is possible to investigate the AEO modulator behavior as a function of this applied voltage. By this way, a lithium niobate AEO modulator is positioned in one of the arms of a Mach-Zehnder interferometer and operates at 62 MHz frequency, which constitutes the intermediate frequency of the heterodyne interferometer. Operating the AEO modulator in the acousto-optic small diffraction efficiency regime, the photodetected signal amplitude and phase are analyzed, and the induced phase shift, transmission curve and linearity response are obtained. The experimental results show good agreement with that expected from the coupled-mode theory. The possibility of linear control of the optical phase shift by the external voltage, from 0 to 2 p radians, is demonstrated.