960 resultados para cost estimation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hospital acquired infections (HAI) are costly but many are avoidable. Evaluating prevention programmes requires data on their costs and benefits. Estimating the actual costs of HAI (a measure of the cost savings due to prevention) is difficult as HAI changes cost by extending patient length of stay, yet, length of stay is a major risk factor for HAI. This endogeneity bias can confound attempts to measure accurately the cost of HAI. We propose a two-stage instrumental variables estimation strategy that explicitly controls for the endogeneity between risk of HAI and length of stay. We find that a 10% reduction in ex ante risk of HAI results in an expected savings of £693 ($US 984).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Construction is an information intensive industry in which the accuracy and timeliness of information is paramount. It observed that the main communication issue in construction is to provide a method to exchange data between the site operation, the site office and the head office. The information needs under consideration are time critical to assist in maintaining or improving the efficiency at the jobsite. Without appropriate computing support this may increase the difficulty of problem solving. Many researchers focus their research on the usage of mobile computing devices in the construction industry and they believe that mobile computers have the potential to solve some construction problems that leads to reduce overall productivity. However, to date very limited observation has been conducted in terms of the deployment of mobile computers for construction workers on-site. By providing field workers with accurate, reliable and timely information at the location where it is needed, it will support the effectiveness and efficiency at the job site. Bringing a new technology into construction industry is not only need a better understanding of the application, but also need a proper preparation of the allocation of the resources such as people, and investment. With this in mind, an accurate analysis is needed to provide clearly idea of the overall costs and benefits of the new technology. A cost benefit analysis is a method of evaluating the relative merits of a proposed investment project in order to achieve efficient allocation of resources. It is a way of identifying, portraying and assessing the factors which need to be considered in making rational economic choices. In principle, a cost benefit analysis is a rigorous, quantitative and data-intensive procedure, which requires identification all potential effects, categorisation of these effects as costs and benefits, quantitative estimation of the extent of each cost and benefit associated with an action, translation of these into a common metric such as dollars, discounting of future costs and benefits into the terms of a given year, and summary of all cost and benefit to see which is greater. Even though many cost benefit analysis methodologies are available for a general assessment, there is no specific methodology can be applied for analysing the cost and benefit of the application of mobile computing devices in the construction site. Hence, the proposed methodology in this document is predominantly adapted from Baker et al. (2000), Department of Finance (1995), and Office of Investment Management (2005). The methodology is divided into four main stages and then detailed into ten steps. The methodology is provided for the CRC CI 2002-057-C Project: Enabling Team Collaboration with Pervasive and Mobile Computing and can be seen in detail in Section 3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An estimation of costs for maintenance and rehabilitation is subject to variation due to the uncertainties of input parameters. This paper presents the results of an analysis to identify input parameters that affect the prediction of variation in road deterioration. Road data obtained from 1688 km of a national highway located in the tropical northeast of Queensland in Australia were used in the analysis. Data were analysed using a probability-based method, the Monte Carlo simulation technique and HDM-4’s roughness prediction model. The results of the analysis indicated that among the input parameters the variability of pavement strength, rut depth, annual equivalent axle load and initial roughness affected the variability of the predicted roughness. The second part of the paper presents an analysis to assess the variation in cost estimates due to the variability of the overall identified critical input parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. The objective is to estimate the cost-effectiveness of an intervention that reduces hospital readmission among older people at high risk. A cost-effectiveness model to estimate the costs and health benefits of the intervention was implemented. Methodology/Principal Findings. The model used data from a randomised controlled trial conducted in an Australian tertiary metropolitan hospital. Participants were acute medical admissions aged >65 years with at least one risk factor for readmission: multiple comorbidities, impaired functionality, aged >75 years, 30 recent multiple admissions, poor social support, history of depression. The intervention was a comprehensive nursing and physiotherapy assessment and an individually tailored program of exercise strategies and nurse home visits with telephone follow-up; commencing in hospital and continuing following discharge for 24 weeks. The change to cost outcomes, including the costs of implementing the intervention and all subsequent use of health care services, and, the change to health benefits, represented by quality adjusted life years, were estimated for the intervention as compared to existing practice. The mean change to total costs and quality 38 adjusted life years for an average individual over 24 weeks participating in the intervention were: cost savings of $333 (95% Bayesian credible interval $-1,932:1,282) and 0.118 extra quality adjusted life years (95% Bayesian credible interval 0.1:0.136). The mean net41 monetary-benefit per individual for the intervention group compared to the usual care condition was $7,907 (95% Bayesian credible interval $5,959:$9,995) for the 24 week period. Conclusions/Significance. The estimation model that describes this intervention predicts cost savings and improved health outcomes. A decision to remain with existing practices causes unnecessary costs and reduced health. Decision makers should consider adopting this 46 program for elderly hospitalised patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the preliminary results in establishing a strategy for predicting Zenith Tropospheric Delay (ZTD) and relative ZTD (rZTD) between Continuous Operating Reference Stations (CORS) in near real-time. It is anticipated that the predicted ZTD or rZTD can assist the network-based Real-Time Kinematic (RTK) performance over long inter-station distances, ultimately, enabling a cost effective method of delivering precise positioning services to sparsely populated regional areas, such as Queensland. This research firstly investigates two ZTD solutions: 1) the post-processed IGS ZTD solution and 2) the near Real-Time ZTD solution. The near Real-Time solution is obtained through the GNSS processing software package (Bernese) that has been deployed for this project. The predictability of the near Real-Time Bernese solution is analyzed and compared to the post-processed IGS solution where it acts as the benchmark solution. The predictability analyses were conducted with various prediction time of 15, 30, 45, and 60 minutes to determine the error with respect to timeliness. The predictability of ZTD and relative ZTD is determined (or characterized) by using the previously estimated ZTD as the predicted ZTD of current epoch. This research has shown that both the ZTD and relative ZTD predicted errors are random in nature; the STD grows from a few millimeters to sub-centimeters while the predicted delay interval ranges from 15 to 60 minutes. Additionally, the RZTD predictability shows very little dependency on the length of tested baselines of up to 1000 kilometers. Finally, the comparison of near Real-Time Bernese solution with IGS solution has shown a slight degradation in the prediction accuracy. The less accurate NRT solution has an STD error of 1cm within the delay of 50 minutes. However, some larger errors of up to 10cm are observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biological inspiration has produced some successful solutions for estimation of self motion from visual information. In this paper we present the construction of a unique new camera, inspired by the compound eye of insects. The hemispherical nature of the compound eye has some intrinsically valuable properties in producing optical flow fields that are suitable for egomotion estimation in six degrees of freedom. The camera that we present has the added advantage of being lightweight and low cost, making it suitable for a range of mobile robot applications. We present some initial results that show the effectiveness of our egomotion estimation algorithm and the image capture capability of the hemispherical camera.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Performing reliable localisation and navigation within highly unstructured underwater coral reef environments is a difficult task at the best of times. Typical research and commercial underwater vehicles use expensive acoustic positioning and sonar systems which require significant external infrastructure to operate effectively. This paper is focused on the development of a robust vision-based motion estimation technique using low-cost sensors for performing real-time autonomous and untethered environmental monitoring tasks in the Great Barrier Reef without the use of acoustic positioning. The technique is experimentally shown to provide accurate odometry and terrain profile information suitable for input into the vehicle controller to perform a range of environmental monitoring tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Performing reliable localisation and navigation within highly unstructured underwater coral reef environments is a difficult task at the best of times. Typical research and commercial underwater vehicles use expensive acoustic positioning and sonar systems which require significant external infrastructure to operate effectively. This paper is focused on the development of a robust vision-based motion estimation technique using low-cost sensors for performing real-time autonomous and untethered environmental monitoring tasks in the Great Barrier Reef without the use of acoustic positioning. The technique is experimentally shown to provide accurate odometry and terrain profile information suitable for input into the vehicle controller to perform a range of environmental monitoring tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sustainability has been increasingly recognised as an integral part of highway infrastructure development. In practice however, the fact that financial return is still a project’s top priority for many, environmental aspects tend to be overlooked or considered as a burden, as they add to project costs. Sustainability and its implications have a far-reaching effect on each project over time. Therefore, with highway infrastructure’s long-term life span and huge capital demand, the consideration of environmental cost/ benefit issues is more crucial in life-cycle cost analysis (LCCA). To date, there is little in existing literature studies on viable estimation methods for environmental costs. This situation presents the potential for focused studies on environmental costs and issues in the context of life-cycle cost analysis. This paper discusses a research project which aims to integrate the environmental cost elements and issues into a conceptual framework for life cycle costing analysis for highway projects. Cost elements and issues concerning the environment were first identified through literature. Through questionnaires, these environmental cost elements will be validated by practitioners before their consolidation into the extension of existing and worked models of life-cycle costing analysis (LCCA). A holistic decision support framework is being developed to assist highway infrastructure stakeholders to evaluate their investment decision. This will generate financial returns while maximising environmental benefits and sustainability outcome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently in Australia, there are no decision support tools for traffic and transport engineers to assess the crash risk potential of proposed road projects at design level. A selection of equivalent tools already exists for traffic performance assessment, e.g. aaSIDRA or VISSIM. The Urban Crash Risk Assessment Tool (UCRAT) was developed for VicRoads by ARRB Group to promote methodical identification of future crash risks arising from proposed road infrastructure, where safety cannot be evaluated based on past crash history. The tool will assist practitioners with key design decisions to arrive at the safest and the most cost -optimal design options. This paper details the development and application of UCRAT software. This professional tool may be used to calculate an expected mean number of casualty crashes for an intersection, a road link or defined road network consisting of a number of such elements. The mean number of crashes provides a measure of risk associated with the proposed functional design and allows evaluation of alternative options. The tool is based on historical data for existing road infrastructure in metropolitan Melbourne and takes into account the influence of key design features, traffic volumes, road function and the speed environment. Crash prediction modelling and risk assessment approaches were combined to develop its unique algorithms. The tool has application in such projects as road access proposals associated with land use developments, public transport integration projects and new road corridor upgrade proposals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the development of a low-cost sensor platform for use in ground-based visual pose estimation and scene mapping tasks. We seek to develop a technical solution using low-cost vision hardware that allows us to accurately estimate robot position for SLAM tasks. We present results from the application of a vision based pose estimation technique to simultaneously determine camera poses and scene structure. The results are generated from a dataset gathered traversing a local road at the St Lucia Campus of the University of Queensland. We show the accuracy of the pose estimation over a 1.6km trajectory in relation to GPS ground truth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We aim to demonstrate unaided visual 3D pose estimation and map reconstruction using both monocular and stereo vision techniques. To date, our work has focused on collecting data from Unmanned Aerial Vehicles, which generates a number of significant issues specific to the application. Such issues include scene reconstruction degeneracy from planar data, poor structure initialisation for monocular schemes and difficult 3D reconstruction due to high feature covariance. Most modern Visual Odometry (VO) and related SLAM systems make use of a number of sensors to inform pose and map generation, including laser range-finders, radar, inertial units and vision [1]. By fusing sensor inputs, the advantages and deficiencies of each sensor type can be handled in an efficient manner. However, many of these sensors are costly and each adds to the complexity of such robotic systems. With continual advances in the abilities, small size, passivity and low cost of visual sensors along with the dense, information rich data that they provide our research focuses on the use of unaided vision to generate pose estimates and maps from robotic platforms. We propose that highly accurate (�5cm) dense 3D reconstructions of large scale environments can be obtained in addition to the localisation of the platform described in other work [2]. Using images taken from cameras, our algorithm simultaneously generates an initial visual odometry estimate and scene reconstruction from visible features, then passes this estimate to a bundle-adjustment routine to optimise the solution. From this optimised scene structure and the original images, we aim to create a detailed, textured reconstruction of the scene. By applying such techniques to a unique airborne scenario, we hope to expose new robotic applications of SLAM techniques. The ability to obtain highly accurate 3D measurements of an environment at a low cost is critical in a number of agricultural and urban monitoring situations. We focus on cameras as such sensors are small, cheap and light-weight and can therefore be deployed in smaller aerial vehicles. This, coupled with the ability of small aerial vehicles to fly near to the ground in a controlled fashion, will assist in increasing the effective resolution of the reconstructed maps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the impediments to large-scale use of wind generation within power system is its variable and uncertain real-time availability. Due to the low marginal cost of wind power, its output will change the merit order of power markets and influence the Locational Marginal Price (LMP). For the large scale of wind power, LMP calculation can't ignore the essential variable and uncertain nature of wind power. This paper proposes an algorithm to estimate LMP. The estimation result of conventional Monte Carlo simulation is taken as benchmark to examine accuracy. Case study is conducted on a simplified SE Australian power system, and the simulation results show the feasibility of proposed method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes modelling, estimation and control of the horizontal translational motion of an open-source and cost effective quadcopter — the MikroKopter. We determine the dynamics of its roll and pitch attitude controller, system latencies, and the units associated with the values exchanged with the vehicle over its serial port. Using this we create a horizontal-plane velocity estimator that uses data from the built-in inertial sensors and an onboard laser scanner, and implement translational control using a nested control loop architecture. We present experimental results for the model and estimator, as well as closed-loop positioning.