918 resultados para control-flow checking
Resumo:
Fuzzy logic has been applied to control traffic at road junctions. A simple controller with one fixed rule-set is inadequate to minimise delays when traffic flow rate is time-varying and likely to span a wide range. To achieve better control, fuzzy rules adapted to the current traffic conditions are used.
Resumo:
In this paper, a rate-based flow control scheme based upon per-VC virtual queuing is proposed for the Available Bit Rate (ABR) service in ATM. In this scheme, each VC in a shared buffer is assigned a virtual queue, which is a counter. To achieve a specific kind of fairness, an appropriate scheduler is applied to the virtual queues. Each VC's bottleneck rate (fair share) is derived from its virtual cell departure rate. This approach of deriving a VC's fair share is simple and accurate. By controlling each VC with respect to its virtual queue and queue build-up in the shared buffer, network congestion is avoided. The principle of the control scheme is first illustrated by max–min flow control, which is realised by scheduling the virtual queues in round-robin. Further application of the control scheme is demonstrated with the achievement of weighted fairness through weighted round robin scheduling. Simulation results show that with a simple computation, the proposed scheme achieves the desired fairness exactly and controls network congestion effectively.
Resumo:
This paper introduces an event-based traffic model for railway systems adopting fixed-block signalling schemes. In this model, the events of trains' arrival at and departure from signalling blocks constitute the states of the traffic flow. A state transition is equivalent to the progress of the trains by one signalling block and it is realised by referring to past and present states, as well as a number of pre-calculated look-up tables of run-times in the signalling block under various signalling conditions. Simulation results are compared with those from a time-based multi-train simulator to study the improvement of processing time and accuracy.
Resumo:
We propose several stochastic approximation implementations for related algorithms in flow-control of communication networks. First, a discrete-time implementation of Kelly's primal flow-control algorithm is proposed. Convergence with probability 1 is shown, even in the presence of communication delays and stochastic effects seen in link congestion indications. This ensues from an analysis of the flow-control algorithm using the asynchronous stochastic approximation (ASA) framework. Two relevant enhancements are then pursued: a) an implementation of the primal algorithm using second-order information, and b) an implementation where edge-routers rectify misbehaving flows. Next, discretetime implementations of Kelly's dual algorithm and primaldual algorithm are proposed. Simulation results a) verifying the proposed algorithms and, b) comparing the stability properties are presented.
Resumo:
FACTS controllers are emerging as viable and economic solutions to the problems of large interconnected ne networks, which can endanger the system security. These devices are characterized by their fast response, absence of inertia, and minimum maintenance requirements. Thyristor controlled equipment like Thyristor Controlled Series Capacitor (TCSC), Static Var Compensator (SVC), Thyristor Controlled Phase angle Regulator (TCPR) etc. which involve passive elements result in devices of large sizes with substantial cost and significant labour for installation. An all solid-state device using GTOs leads to reduction in equipment size and has improved performance. The Unified Power Flow Controller (UPFC) is a versatile controller which can be used to control the active and reactive power in the Line independently. The concept of UPFC makes it possible to handle practically all power flow control and transmission line compensation problems, using solid-state controllers, which provide functional flexibility, generally not attainable by conventional thyristor controlled systems. In this paper, we present the development of a control scheme for the series injected voltage of the UPFC to damp the power oscillations and improve transient stability in a power system. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Experimental study and optimization of Plasma Ac- tuators for Flow control in subsonic regime PRADEEP MOISE, JOSEPH MATHEW, KARTIK VENKATRAMAN, JOY THOMAS, Indian Institute of Science, FLOW CONTROL TEAM | The induced jet produced by a dielectric barrier discharge (DBD) setup is capable of preventing °ow separation on airfoils at high angles of attack. The ef-fect of various parameters on the velocity of this induced jet was studied experimentally. The glow discharge was created at atmospheric con-ditions by using a high voltage RF power supply. Flow visualization,photographic studies of the plasma, and hot-wire measurements on the induced jet were performed. The parametric investigation of the charac- teristics of the plasma show that the width of the plasma in the uniform glow discharge regime was an indication of the velocity induced. It was observed that the spanwise and streamwise overlap of the two electrodes,dielectric thickness, voltage and frequency of the applied voltage are the major parameters that govern the velocity and the extent of plasma.e®ect of the optimized con¯guration on the performance characteristics of an airfoil was studied experimentally.
Resumo:
Current standard security practices do not provide substantial assurance about information flow security: the end-to-end behavior of a computing system. Noninterference is the basic semantical condition used to account for information flow security. In the literature, there are many definitions of noninterference: Non-inference, Separability and so on. Mantel presented a framework of Basic Security Predicates (BSPs) for characterizing the definitions of noninterference in the literature. Model-checking these BSPs for finite state systems was shown to be decidable in [8]. In this paper, we show that verifying these BSPs for the more expressive system model of pushdown systems is undecidable. We also give an example of a simple security property which is undecidable even for finite-state systems: the property is a weak form of non-inference called WNI, which is not expressible in Mantel’s BSP framework.
Resumo:
This paper is concerned with the optimal flow control of an ATM switching element in a broadband-integrated services digital network. We model the switching element as a stochastic fluid flow system with a finite buffer, a constant output rate server, and a Gaussian process to characterize the input, which is a heterogeneous set of traffic sources. The fluid level should be maintained between two levels namely b1 and b2 with b1
Resumo:
Control of flow in duct networks has a myriad of applications ranging from heating, ventilation, and air-conditioning to blood flow networks. The system considered here provides vent velocity inputs to a novel 3-D wind display device called the TreadPort Active Wind Tunnel. An error-based robust decentralized sliding-mode control method with nominal feedforward terms is developed for individual ducts while considering cross coupling between ducts and model uncertainty as external disturbances in the output. This approach is important due to limited measurements, geometric complexities, and turbulent flow conditions. Methods for resolving challenges such as turbulence, electrical noise, valve actuator design, and sensor placement are presented. The efficacy of the controller and the importance of feedforward terms are demonstrated with simulations based upon an experimentally validated lumped parameter model and experiments on the physical system. Results show significant improvement over traditional control methods and validate prior assertions regarding the importance of decentralized control in practice.
Resumo:
Bisimulation-based information flow properties were introduced by Focardi and Gorrieri [1] as a way of specifying security properties for transition system models. These properties were shown to be decidable for finite-state systems. In this paper, we study the problem of verifying these properties for some well-known classes of infinite state systems. We show that all the properties are undecidable for each of these classes of systems.