911 resultados para continuous-wave (CW) lasers
Resumo:
post-deadline paper
Resumo:
Thanks to a passive cavity configuration, modulational instability in fibers is successfully observed, for the first time to our knowledge, in the continuous-wave regime. Our technique provides a new means of generating all-optically ultrahigh-repetition-rate pulse trains and opens up new possibilities for the fundamental study of modulational instability and related phenomena. © 2001 Optical Society of America.
Resumo:
We have observed ultraviolet upconversion fluorescence from the 4D3/2 and 2P3/2 levels of Nd3+ in fluoroindate glass under infrared pumping. It was found that the excitation of a large population in the 4F3/2 metastable level allows to achieve strong upconversion emissions at 354 and 382 nm. A simple rate equation model reproduces the temporal behavior of the upconverted emission and allows us to estimate the energy transfer rate among three Nd3+ ions participating in the process. © 1997 American Institute of Physics.
Resumo:
This year marks the 20th anniversary of functional near-infrared spectroscopy and imaging (fNIRS/fNIRI). As the vast majority of commercial instruments developed until now are based on continuous wave technology, the aim of this publication is to review the current state of instrumentation and methodology of continuous wave fNIRI. For this purpose we provide an overview of the commercially available instruments and address instrumental aspects such as light sources, detectors and sensor arrangements. Methodological aspects, algorithms to calculate the concentrations of oxy- and deoxyhemoglobin and approaches for data analysis are also reviewed. From the single-location measurements of the early years, instrumentation has progressed to imaging initially in two dimensions (topography) and then three (tomography). The methods of analysis have also changed tremendously, from the simple modified Beer-Lambert law to sophisticated image reconstruction and data analysis methods used today. Due to these advances, fNIRI has become a modality that is widely used in neuroscience research and several manufacturers provide commercial instrumentation. It seems likely that fNIRI will become a clinical tool in the foreseeable future, which will enable diagnosis in single subjects.
Resumo:
We present a derivation and, based on it, an extension of a model originally proposed by V.G. Niziev to describe continuous wave laser cutting of metals. Starting from a local energy balance and by incorporating heat removal through heat conduction to the bulk material, we find a differential equation for the cutting profile. This equation is solved numerically and yields, besides the cutting profiles, the maximum cutting speed, the absorptivity profiles, and other relevant quantities. Our main goal is to demonstrate the model’s capability to explain some of the experimentally observed differences between laser cutting at around 1 and 10 μm wavelengths. To compare our numerical results to experimental observations, we perform simulations for exactly the same material and laser beam parameters as those used in a recent comparative experimental study. Generally, we find good agreement between theoretical and experimental results and show that the main differences between laser cutting with 1- and 10-μm beams arise from the different absorptivity profiles and absorbed intensities. Especially the latter suggests that the energy transfer, and thus the laser cutting process, is more efficient in the case of laser cutting with 1-μm beams.
Resumo:
Generation of continuous wave radiation at terahertz (THz) frequencies from a heterodyne source based on quantum-dot (QD) semiconductor materials is reported. The source comprises an active region characterised by multiple alternating photoconductive and QD carrier trapping layers and is pumped by two infrared optical signals with slightly offset wavelengths, allowing photoconductive device switching at the signals? difference frequency ~1 THz.(C) 2012 American Institute of Physics.
Resumo:
Experiments of autogenous laser full penetration welding between dissimilar cast Ni-based superalloy K418 and alloy steel 42CrMo flat plates with 3.5 mm thickness were conducted using a 3 kW continuous wave (CW) Nd:YAG laser. The influences of laser welding velocity, flow rate of side-blow shielding gas, defocusing distance were investigated. Microstructure of the welded seam was characterized by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). Mechanical properties of the welded seam were evaluated by microhardness and tensile strength testing. Results show that high quality full penetration laser-welded joint can be obtained by optimizing the welding velocity, flow rate of shielding gas and defocusing distance. The laser-welded seam have non-equilibrium solidified microstructures consisting of gamma-FeCr0.29Ni0.16C0.06 austenite solid solution dendrites as the dominant and very small amount of super-fine dispersed Ni3Al gamma' phase and Laves particles as well as MC needle-like carbides distributed in the interdendritic regions. Although the microhardness of the laser-welded seam was lower than that of the base metal, the strength of the joint was equal to that of the base metal and the fracture mechanism showed fine ductility. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
本文报导了采用半导体激光器泵浦的高效连续可调谐Yb:LYSO激光器的输出特性。LYSO晶体同时具有LSO晶体良好的激光性能和YSO晶体易于生长且成本低廉的优点,实验中我们采用5at%掺杂的Yb:LYSO晶体进行研究,获得了最大输出功率2.84W、输出波长1085nm、光-光转换效率54.5%的高效输出。并且得到了1030-1111nm,一共81nm的波长调谐范围,这是目前我们所知道的从Yb:LYSO激光器获得的最宽的调谐输出。
Resumo:
Fluorescence spectra of Nd: YVO4 under excitation of a continuous wave (CW) diode laser and a femtosecond laser at 800nm were investigated. It was found that Nd: YVO4 shows different upconversion and downconversion luminescencent behaviors when excited by the diode laser and the femtosecond laser. The dependence of the upconversion luminescence intensity on the pump power of the femtosecond laser was discussed. The populations of the upper energy levels for upconversion and downconversion luminescence were calculated based on the Bloch equations. The calculations agree well with the experimental results. (c) 2007 Optical Society of America.
Resumo:
We present the theoretical analysis and the numerical modeling of optical levitation and trapping of the stuck particles with a pulsed optical tweezers. In our model, a pulsed laser was used to generate a large gradient force within a short duration that overcame the adhesive interaction between the stuck particles and the surface; and then a low power continuous - wave (cw) laser was used to capture the levitated particle. We describe the gradient force generated by the pulsed optical tweezers and model the binding interaction between the stuck beads and glass surface by the dominative van der Waals force with a randomly distributed binding strength. We numerically calculate the single pulse levitation efficiency for polystyrene beads as the function of the pulse energy, the axial displacement from the surface to the pulsed laser focus and the pulse duration. The result of our numerical modeling is qualitatively consistent with the experimental result. (C) 2005 Optical Society of America.