933 resultados para constrained reconstruction
Resumo:
Distribution systems are the first volunteers experiencing the benefits of smart grids. The smart grid concept impacts the internal legislation and standards in grid-connected and isolated distribution systems. Demand side management, the main feature of smart grids, acquires clear meaning in low voltage distribution systems. In these networks, various coordination procedures are required between domestic, commercial and industrial consumers, producers and the system operator. Obviously, the technical basis for bidirectional communication is the prerequisite of developing such a coordination procedure. The main coordination is required when the operator tries to dispatch the producers according to their own preferences without neglecting its inherent responsibility. Maintenance decisions are first determined by generating companies, and then the operator has to check and probably modify them for final approval. In this paper the generation scheduling from the viewpoint of a distribution system operator (DSO) is formulated. The traditional task of the DSO is securing network reliability and quality. The effectiveness of the proposed method is assessed by applying it to a 6-bus and 9-bus distribution system.
Resumo:
A crucial method for investigating patients with coronary artery disease (CAD) is the calculation of the left ventricular ejection fraction (LVEF). It is, consequently, imperative to precisely estimate the value of LVEF--a process that can be done with myocardial perfusion scintigraphy. Therefore, the present study aimed to establish and compare the estimation performance of the quantitative parameters of the reconstruction methods filtered backprojection (FBP) and ordered-subset expectation maximization (OSEM). Methods: A beating-heart phantom with known values of end-diastolic volume, end-systolic volume, and LVEF was used. Quantitative gated SPECT/quantitative perfusion SPECT software was used to obtain these quantitative parameters in a semiautomatic mode. The Butterworth filter was used in FBP, with the cutoff frequencies between 0.2 and 0.8 cycles per pixel combined with the orders of 5, 10, 15, and 20. Sixty-three reconstructions were performed using 2, 4, 6, 8, 10, 12, and 16 OSEM subsets, combined with several iterations: 2, 4, 6, 8, 10, 12, 16, 32, and 64. Results: With FBP, the values of end-diastolic, end-systolic, and the stroke volumes rise as the cutoff frequency increases, whereas the value of LVEF diminishes. This same pattern is verified with the OSEM reconstruction. However, with OSEM there is a more precise estimation of the quantitative parameters, especially with the combinations 2 iterations × 10 subsets and 2 iterations × 12 subsets. Conclusion: The OSEM reconstruction presents better estimations of the quantitative parameters than does FBP. This study recommends the use of 2 iterations with 10 or 12 subsets for OSEM and a cutoff frequency of 0.5 cycles per pixel with the orders 5, 10, or 15 for FBP as the best estimations for the left ventricular volumes and ejection fraction quantification in myocardial perfusion scintigraphy.
Resumo:
In real optimization problems, usually the analytical expression of the objective function is not known, nor its derivatives, or they are complex. In these cases it becomes essential to use optimization methods where the calculation of the derivatives, or the verification of their existence, is not necessary: the Direct Search Methods or Derivative-free Methods are one solution. When the problem has constraints, penalty functions are often used. Unfortunately the choice of the penalty parameters is, frequently, very difficult, because most strategies for choosing it are heuristics strategies. As an alternative to penalty function appeared the filter methods. A filter algorithm introduces a function that aggregates the constrained violations and constructs a biobjective problem. In this problem the step is accepted if it either reduces the objective function or the constrained violation. This implies that the filter methods are less parameter dependent than a penalty function. In this work, we present a new direct search method, based on simplex methods, for general constrained optimization that combines the features of the simplex method and filter methods. This method does not compute or approximate any derivatives, penalty constants or Lagrange multipliers. The basic idea of simplex filter algorithm is to construct an initial simplex and use the simplex to drive the search. We illustrate the behavior of our algorithm through some examples. The proposed methods were implemented in Java.
Resumo:
One of the most effective ways of controlling vibrations in plate or beam structures is by means of constrained viscoelastic damping treatments. Contrary to the unconstrained configuration, the design of constrained and integrated layer damping treatments is multifaceted because the thickness of the viscoelastic layer acts distinctly on the two main counterparts of the strain energy the volume of viscoelastic material and the shear strain field. In this work, a parametric study is performed exploring the effect that the design parameters, namely the thickness/length ratio, constraining layer thickness, material modulus, natural mode and boundary conditions have on these two counterparts and subsequently, on the treatment efficiency. This paper presents five parametric studies, namely, the thickness/length ratio, the constraining layer thickness, material properties, natural mode and boundary conditions. The results obtained evidence an interesting effect when dealing with very thin viscoelastic layers that contradicts the standard treatment efficiency vs. layer thickness relation; hence, the potential optimisation of constrained and integrated viscoelastic treatments through the use of properly designed thin multilayer configurations is justified. This work presents a dimensionless analysis and provides useful general guidelines for the efficient design of constrained and integrated damping treatments based on single or multi-layer configurations. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Conferência: 39th Annual Conference of the IEEE Industrial-Electronics-Society (IECON) - NOV 10-14, 2013
Resumo:
Securing group communication in wireless sensor networks has recently been extensively investigated. Many works have addressed this issue, and they have considered the grouping concept differently. In this paper, we consider a group as being a set of nodes sensing the same data type, and we alternatively propose an efficient secure group communication scheme guaranteeing secure group management and secure group key distribution. The proposed scheme (RiSeG) is based on a logical ring architecture, which permits to alleviate the group controller’s task in updating the group key. The proposed scheme also provides backward and forward secrecy, addresses the node compromise attack, and gives a solution to detect and eliminate the compromised nodes. The security analysis and performance evaluation show that the proposed scheme is secure, highly efficient, and lightweight. A comparison with the logical key hierarchy is preformed to prove the rekeying process efficiency of RiSeG. Finally, we present the implementation details of RiSeG on top of TelosB sensor nodes to demonstrate its feasibility.
Resumo:
Consider a single processor and a software system. The software system comprises components and interfaces where each component has an associated interface and each component comprises a set of constrained-deadline sporadic tasks. A scheduling algorithm (called global scheduler) determines at each instant which component is active. The active component uses another scheduling algorithm (called local scheduler) to determine which task is selected for execution on the processor. The interface of a component makes certain information about a component visible to other components; the interfaces of all components are used for schedulability analysis. We address the problem of generating an interface for a component based on the tasks inside the component. We desire to (i) incur only a small loss in schedulability analysis due to the interface and (ii) ensure that the amount of space (counted in bits) of the interface is small; this is because such an interface hides as much details of the component as possible. We present an algorithm for generating such an interface.
Resumo:
We present a 12*(1+|R|/(4m))-speed algorithm for scheduling constrained-deadline sporadic real-time tasks on a multiprocessor comprising m processors where a task may request one of |R| sequentially-reusable shared resources.
Resumo:
Compositional real-time scheduling clearly requires that ”normal” real-time scheduling challenges are addressed but challenges intrinsic to compositionality must be addressed as well, in particular: (i) how should interfaces be described? and (ii) how should numerical values be assigned to parameters constituting the interfaces? The real-time systems community has traditionally used narrow interfaces for describing a component (for example, a utilization/bandwidthlike metric and the distribution of this bandwidth in time). In this paper, we introduce the concept of competitive ratio of an interface and show that typical narrow interfaces cause poor performance for scheduling constrained-deadline sporadic tasks (competitive ratio is infinite). Therefore, we explore more expressive interfaces; in particular a class called medium-wide interfaces. For this class, we propose an interface type and show how the parameters of the interface should be selected. We also prove that this interface is 8-competitive.
Resumo:
A construction project is a group of discernible tasks or activities that are conduct-ed in a coordinated effort to accomplish one or more objectives. Construction projects re-quire varying levels of cost, time and other resources. To plan and schedule a construction project, activities must be defined sufficiently. The level of detail determines the number of activities contained within the project plan and schedule. So, finding feasible schedules which efficiently use scarce resources is a challenging task within project management. In this context, the well-known Resource Constrained Project Scheduling Problem (RCPSP) has been studied during the last decades. In the RCPSP the activities of a project have to be scheduled such that the makespan of the project is minimized. So, the technological precedence constraints have to be observed as well as limitations of the renewable resources required to accomplish the activities. Once started, an activity may not be interrupted. This problem has been extended to a more realistic model, the multi-mode resource con-strained project scheduling problem (MRCPSP), where each activity can be performed in one out of several modes. Each mode of an activity represents an alternative way of combining different levels of resource requirements with a related duration. Each renewable resource has a limited availability for the entire project such as manpower and machines. This paper presents a hybrid genetic algorithm for the multi-mode resource-constrained pro-ject scheduling problem, in which multiple execution modes are available for each of the ac-tivities of the project. The objective function is the minimization of the construction project completion time. To solve the problem, is applied a two-level genetic algorithm, which makes use of two separate levels and extend the parameterized schedule generation scheme. It is evaluated the quality of the schedules and presents detailed comparative computational re-sults for the MRCPSP, which reveal that this approach is a competitive algorithm.
Resumo:
This paper presents a genetic algorithm for the resource constrained multi-project scheduling problem. The chromosome representation of the problem is based on random keys. The schedules are constructed using a heuristic that builds parameterized active schedules based on priorities, delay times, and release dates defined by the genetic algorithm. The approach is tested on a set of randomly generated problems. The computational results validate the effectiveness of the proposed algorithm.
Resumo:
This paper presents a biased random-key genetic algorithm for the resource constrained project scheduling problem. The chromosome representation of the problem is based on random keys. Active schedules are constructed using a priority-rule heuristic in which the priorities of the activities are defined by the genetic algorithm. A forward-backward improvement procedure is applied to all solutions. The chromosomes supplied by the genetic algorithm are adjusted to reflect the solutions obtained by the improvement procedure. The heuristic is tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm.
Resumo:
This paper presents a genetic algorithm for the multimode resource-constrained project scheduling problem (MRCPSP), in which multiple execution modes are available for each of the activities of the project. The objective function is the minimization of the construction project completion time. To solve the problem, is applied a two-level genetic algorithm, which makes use of two separate levels and extend the parameterized schedule generation scheme by introducing an improvement procedure. It is evaluated the quality of the schedule and present detailed comparative computational results for the MRCPSP, which reveal that this approach is a competitive algorithm.
Resumo:
Objective: Summarize all relevant findings in published literature regarding the potential dose reduction related to image quality using Sinogram-Affirmed Iterative Reconstruction (SAFIRE) compared to Filtered Back Projection (FBP). Background: Computed Tomography (CT) is one of the most used radiographic modalities in clinical practice providing high spatial and contrast resolution. However it also delivers a relatively high radiation dose to the patient. Reconstructing raw-data using Iterative Reconstruction (IR) algorithms has the potential to iteratively reduce image noise while maintaining or improving image quality of low dose standard FBP reconstructions. Nevertheless, long reconstruction times made IR unpractical for clinical use until recently. Siemens Medical developed a new IR algorithm called SAFIRE, which uses up to 5 different strength levels, and poses an alternative to the conventional IR with a significant reconstruction time reduction. Methods: MEDLINE, ScienceDirect and CINAHL databases were used for gathering literature. Eleven articles were included in this review (from 2012 to July 2014). Discussion: This narrative review summarizes the results of eleven articles (using studies on both patients and phantoms) and describes SAFIRE strengths for noise reduction in low dose acquisitions while providing acceptable image quality. Conclusion: Even though the results differ slightly, the literature gathered for this review suggests that the dose in current CT protocols can be reduced at least 50% while maintaining or improving image quality. There is however a lack of literature concerning paediatric population (with increased radiation sensitivity). Further studies should also assess the impact of SAFIRE on diagnostic accuracy.
Resumo:
Background: Computed tomography (CT) is one of the most used modalities for diagnostics in paediatric populations, which is a concern as it also delivers a high patient dose. Research has focused on developing computer algorithms that provide better image quality at lower dose. The iterative reconstruction algorithm Sinogram-Affirmed Iterative Reconstruction (SAFIRE) was introduced as a new technique that reduces noise to increase image quality. Purpose: The aim of this study is to compare SAFIRE with the current gold standard, Filtered Back Projection (FBP), and assess whether SAFIRE alone permits a reduction in dose while maintaining image quality in paediatric head CT. Methods: Images were collected using a paediatric head phantom using a SIEMENS SOMATOM PERSPECTIVE 128 modulated acquisition. 54 images were reconstructed using FBP and 5 different strengths of SAFIRE. Objective measures of image quality were determined by measuring SNR and CNR. Visual measures of image quality were determined by 17 observers with different radiographic experiences. Images were randomized and displayed using 2AFC; observers scored the images answering 5 questions using a Likert scale. Results: At different dose levels, SAFIRE significantly increased SNR (up to 54%) in the acquired images compared to FBP at 80kVp (5.2-8.4), 110kVp (8.2-12.3), 130kVp (8.8-13.1). Visual image quality was higher with increasing SAFIRE strength. The highest image quality was scored with SAFIRE level 3 and higher. Conclusion: The SAFIRE algorithm is suitable for image noise reduction in paediatric head CT. Our data demonstrates that SAFIRE enhances SNR while reducing noise with a possible reduction of dose of 68%.