879 resultados para conservation genetics, Khaya senegalensis, microsatellite, next-generation sequencing
Resumo:
The introduction of Next Generation Sequencing (NGS) facilitated the task of localizing DNA variation and identifying the genetic cause of yet unsolved Mendelian disorders. Using Whole Exome Capture method and NGS, we identified the causative genetic aberration responsible for a number of monogenic disorders previously undetermined. Due to the novelty of the NGS method we benchmarked different algorithms to assess their merits and defects. This allowed us to establish a pipeline that we successfully used to pinpoint genes responsible for a form of West's syndrome, a Complex Intellectual Disability syndrome associated with patellar dislocation and celiac disease, and correcting some erroneous molecular diagnosis of Alport's syndrome in a Saudi Arabian family.
Resumo:
Differences between genomes can be due to single nucleotide variants, translocations, inversions, and copy number variants (CNVs, gain or loss of DNA). The latter can range from sub-microscopic events to complete chromosomal aneuploidies. Small CNVs are often benign but those larger than 500 kb are strongly associated with morbid consequences such as developmental disorders and cancer. Detecting CNVs within and between populations is essential to better understand the plasticity of our genome and to elucidate its possible contribution to disease. Hence there is a need for better-tailored and more robust tools for the detection and genome-wide analyses of CNVs. While a link between a given CNV and a disease may have often been established, the relative CNV contribution to disease progression and impact on drug response is not necessarily understood. In this review we discuss the progress, challenges, and limitations that occur at different stages of CNV analysis from the detection (using DNA microarrays and next-generation sequencing) and identification of recurrent CNVs to the association with phenotypes. We emphasize the importance of germline CNVs and propose strategies to aid clinicians to better interpret structural variations and assess their clinical implications.
Resumo:
The major active retinoid, all-trans retinoic acid, has long been recognized as critical for the development of several organs, including the eye. Mutations in STRA6, the gene encoding the cellular receptor for vitamin A, in patients with Matthew-Wood syndrome and anophthalmia/microphthalmia (A/M), have previously demonstrated the importance of retinol metabolism in human eye disease. We used homozygosity mapping combined with next-generation sequencing to interrogate patients with anophthalmia and microphthalmia for new causative genes. We used whole-exome and whole-genome sequencing to study a family with two affected brothers with bilateral A/M and a simplex case with bilateral anophthalmia and hypoplasia of the optic nerve and optic chiasm. Analysis of novel sequence variants revealed homozygosity for two nonsense mutations in ALDH1A3, c.568A>G, predicting p.Lys190*, in the familial cases, and c.1165A>T, predicting p.Lys389*, in the simplex case. Both mutations predict nonsense-mediated decay and complete loss of function. We performed antisense morpholino (MO) studies in Danio rerio to characterize the developmental effects of loss of Aldh1a3 function. MO-injected larvae showed a significant reduction in eye size, and aberrant axonal projections to the tectum were noted. We conclude that ALDH1A3 loss of function causes anophthalmia and aberrant eye development in humans and in animal model systems.
Resumo:
Structural variation is variation in structure of DNA regions affecting DNA sequence length and/or orientation. It generally includes deletions, insertions, copy-number gains, inversions, and transposable elements. Traditionally, the identification of structural variation in genomes has been challenging. However, with the recent advances in high-throughput DNA sequencing and paired-end mapping (PEM) methods, the ability to identify structural variation and their respective association to human diseases has improved considerably. In this review, we describe our current knowledge of structural variation in the mouse, one of the prime model systems for studying human diseases and mammalian biology. We further present the evolutionary implications of structural variation on transposable elements. We conclude with future directions on the study of structural variation in mouse genomes that will increase our understanding of molecular architecture and functional consequences of structural variation.
Resumo:
The class Kinetoplastea encompasses both free-living and parasitic species from a wide range of hosts. Several representatives of this group are responsible for severe human diseases and for economic losses in agriculture and livestock. While this group encompasses over 30 genera, most of the available information has been derived from the vertebrate pathogenic genera Leishmaniaand Trypanosoma. Recent studies of the previously neglected groups of Kinetoplastea indicated that the actual diversity is much higher than previously thought. This article discusses the known segment of kinetoplastid diversity and how gene-directed Sanger sequencing and next-generation sequencing methods can help to deepen our knowledge of these interesting protists.
Resumo:
Aleppo pine (Pinus halepensis Mill.) is a relevant conifer species for studying adaptive responses to drought and fire regimes in the Mediterranean region. In this study, we performed Illumina next-generation sequencing of two phenotypically divergent Aleppo pine accessions with the aims of (i) characterizing the transcriptome through Illumina RNA-Seq on trees phenotypically divergent for adaptive traits linked to fire adaptation and drought, (ii) performing a functional annotation of the assembled transcriptome, (iii) identifying genes with accelerated evolutionary rates, (iv) studying the expression levels of the annotated genes and (v) developing gene-based markers for population genomic and association genetic studies. The assembled transcriptome consisted of 48,629 contigs and covered about 54.6 Mbp. The comparison of Aleppo pine transcripts to Picea sitchensis protein-coding sequences resulted in the detection of 34,014 SNPs across species, with a Ka /Ks average value of 0.216, suggesting that the majority of the assembled genes are under negative selection. Several genes were differentially expressed across the two pine accessions with contrasted phenotypes, including a glutathione-s-transferase, a cellulose synthase and a cobra-like protein. A large number of new markers (3334 amplifiable SSRs and 28,236 SNPs) have been identified which should facilitate future population genomics and association genetics in this species. A 384-SNP Oligo Pool Assay for genotyping with the Illumina VeraCode technology has been designed which showed an high overall SNP conversion rate (76.6%). Our results showed that Illumina next-generation sequencing is a valuable technology to obtain an extensive overview on whole transcriptomes of nonmodel species with large genomes.
Resumo:
The benzothiazinone lead compound, BTZ043, kills Mycobacterium tuberculosis by inhibiting the essential flavo-enzyme DprE1, decaprenylphosphoryl-beta-D-ribose 2-epimerase. Here, we synthesized a new series of piperazine-containing benzothiazinones (PBTZ) and show that, like BTZ043, the preclinical candidate PBTZ169 binds covalently to DprE1. The crystal structure of the DprE1-PBTZ169 complex reveals formation of a semimercaptal adduct with Cys387 in the active site and explains the irreversible inactivation of the enzyme. Compared to BTZ043, PBTZ169 has improved potency, safety and efficacy in zebrafish and mouse models of tuberculosis (TB). When combined with other TB drugs, PBTZ169 showed additive activity against M. tuberculosis in vitro except with bedaquiline (BDQ) where synergy was observed. A new regimen comprising PBTZ169, BDQ and pyrazinamide was found to be more efficacious than the standard three drug treatment in a murine model of chronic disease. PBTZ169 is thus an attractive drug candidate to treat TB in humans.
Resumo:
Heterozygous mutations in the PRPF31 gene cause autosomal dominant retinitis pigmentosa (adRP), a hereditary disorder leading to progressive blindness. In some cases, such mutations display incomplete penetrance, implying that certain carriers develop retinal degeneration while others have no symptoms at all. Asymptomatic carriers are protected from the disease by a higher than average expression of the PRPF31 allele that is not mutated, mainly through the action of an unknown modifier gene mapping to chromosome 19q13.4. We investigated a large family with adRP segregating an 11-bp deletion in PRPF31. The analysis of cell lines derived from asymptomatic and affected individuals revealed that the expression of only one gene among a number of candidates within the 19q13.4 interval significantly correlated with that of PRPF31, both at the mRNA and protein levels, and according to an inverse relationship. This gene was CNOT3, encoding a subunit of the Ccr4-not transcription complex. In cultured cells, siRNA-mediated silencing of CNOT3 provoked an increase in PRPF31 expression, confirming a repressive nature of CNOT3 on PRPF31. Furthermore, chromatin immunoprecipitation revealed that CNOT3 directly binds to a specific PRPF31 promoter sequence, while next-generation sequencing of the CNOT3 genomic region indicated that its variable expression is associated with a common intronic SNP. In conclusion, we identify CNOT3 as the main modifier gene determining penetrance of PRPF31 mutations, via a mechanism of transcriptional repression. In asymptomatic carriers CNOT3 is expressed at low levels, allowing higher amounts of wild-type PRPF31 transcripts to be produced and preventing manifestation of retinal degeneration.
Resumo:
Cancer omics data are exponentially created and associated with clinical variables, and important findings can be extracted based on bioinformatics approaches which can then be experimentally validated. Many of these findings are related to a specific class of non-coding RNA molecules called microRNAs (miRNAs) (post-transcriptional regulators of mRNA expression). The related research field is quite heterogeneous and bioinformaticians, clinicians, statisticians and biologists, as well as data miners and engineers collaborate to cure stored data and on new impulses coming from the output of the latest Next Generation Sequencing technologies. Here we review the main research findings on miRNA of the first 10 years in colon cancer research with an emphasis on possible uses in clinical practice. This review intends to provide a road map in the jungle of publications of miRNA in colorectal cancer, focusing on data availability and new ways to generate biologically relevant information out of these huge amounts of data.
Resumo:
Progress in genomics with, in particular, high throughput next generation sequencing is revolutionizing oncology. The impact of these techniques is seen on the one hand the identification of germline mutations that predispose to a given type of cancer, allowing for a personalized care of patients or healthy carriers and, on the other hand, the characterization of all acquired somatic mutation of the tumor cell, opening the door to personalized treatment targeting the driver oncogenes. In both cases, next generation sequencing techniques allow a global approach whereby the integrality of the genome mutations is analyzed and correlated with the clinical data. The benefits on the quality of care delivered to our patients are extremely impressive.
Resumo:
BACKGROUND: Genetic predisposition to life-threatening cardiac arrhythmias such as congenital long-QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT) represent treatable causes of sudden cardiac death in young adults and children. Recently, mutations in calmodulin (CALM1, CALM2) have been associated with severe forms of LQTS and CPVT, with life-threatening arrhythmias occurring very early in life. Additional mutation-positive cases are needed to discern genotype-phenotype correlations associated with calmodulin mutations. METHODS AND RESULTS: We used conventional and next-generation sequencing approaches, including exome analysis, in genotype-negative LQTS probands. We identified 5 novel de novo missense mutations in CALM2 in 3 subjects with LQTS (p.N98S, p.N98I, p.D134H) and 2 subjects with clinical features of both LQTS and CPVT (p.D132E, p.Q136P). Age of onset of major symptoms (syncope or cardiac arrest) ranged from 1 to 9 years. Three of 5 probands had cardiac arrest and 1 of these subjects did not survive. The clinical severity among subjects in this series was generally less than that originally reported for CALM1 and CALM2 associated with recurrent cardiac arrest during infancy. Four of 5 probands responded to β-blocker therapy, whereas 1 subject with mutation p.Q136P died suddenly during exertion despite this treatment. Mutations affect conserved residues located within Ca(2+)-binding loops III (p.N98S, p.N98I) or IV (p.D132E, p.D134H, p.Q136P) and caused reduced Ca(2+)-binding affinity. CONCLUSIONS: CALM2 mutations can be associated with LQTS and with overlapping features of LQTS and CPVT.
Resumo:
The identification of genetic causes for Mendelian disorders has been based on the collection of multi-incident families, linkage analysis, and sequencing of genes in candidate intervals. This study describes the application of next-generation sequencing technologies to a Swiss kindred presenting with autosomal-dominant, late-onset Parkinson disease (PD). The family has tremor-predominant dopa-responsive parkinsonism with a mean onset of 50.6 ± 7.3 years. Exome analysis suggests that an aspartic-acid-to-asparagine mutation within vacuolar protein sorting 35 (VPS35 c.1858G>A; p.Asp620Asn) is the genetic determinant of disease. VPS35 is a central component of the retromer cargo-recognition complex, is critical for endosome-trans-golgi trafficking and membrane-protein recycling, and is evolutionarily highly conserved. VPS35 c.1858G>A was found in all affected members of the Swiss kindred and in three more families and one patient with sporadic PD, but it was not observed in 3,309 controls. Further sequencing of familial affected probands revealed only one other missense variant, VPS35 c.946C>T; (p.Pro316Ser), in a pedigree with one unaffected and two affected carriers, and thus the pathogenicity of this mutation remains uncertain. Retromer-mediated sorting and transport is best characterized for acid hydrolase receptors. However, the complex has many types of cargo and is involved in a diverse array of biologic pathways from developmental Wnt signaling to lysosome biogenesis. Our study implicates disruption of VPS35 and retromer-mediated trans-membrane protein sorting, rescue, and recycling in the neurodegenerative process leading to PD.
Resumo:
Several studies over the last few years have shown that newly arising (de novo) mutations contribute to the genetics of schizophrenia (SZ), autism (ASD) and other developmental disorders. The strongest evidence comes from studies of de novo Copy Number Variation (CNV), where the rate of new mutations is shown to be increased in cases when compared to controls [23, 24]. Research on de novo point mutations and small insertion-deletions (indels) has been more limited, but with the development of next-generation sequencing (NGS) technology, such studies are beginning to provide preliminary evidence that de novo single-nucleotide mutations (SNVs) might also increase risk of SZ and ASD [25, 26] Advanced paternal age is a major source of new mutations in human beings [27] and could thus be associated with increased risk for developing SZ, ASD or other developmental disorders. Indeed, advanced paternal age is found to be a risk factor for developing SZ and ASD in the offspring [28, 29] and new mutations related to advanced paternal age have been implicated as a cause of sporadic cases in several autosomal dominant diseases, some neurodevelopmental diseases, including SZ and ASD, and social functioning. New single-base substitutions occur at higher rates at males compared to females and this difference increases with paternal age. This is due to the fact that sperm cells go through a much higher number of cell divisions (~840 by the age of 50), which increases the risk for DNA copy errors in the male germ line [30] . By contrast, the female eggs (oocytes) undergo only 24 cell divisions and all but the last occur during foetal life. The aim of my project is to determine the parent-of-origin of de novo SNVs, using large samples of parent-offspring trios affected with schizophrenia (SZ). From whole exome sequencing of 618 Bulgarian proband-offspring trios affected, nearly 1000 de novo (SNVs or small indels) have been identified and from these, the parent-of-origin of at least 60% of the mutations (N=600) can be established. This project is contained in a main one that consists on the determination of the parental origin of different types of de novo mutations (SNVs, small indels and large CNVs).
Resumo:
BACKGROUND/AIMS: Calcium homeostasis requires regulated cellular and interstitial systems interacting to modulate the activity and movement of this ion. Disruption of these systems in the kidney results in nephrocalcinosis and nephrolithiasis, important medical problems whose pathogenesis is incompletely understood. METHODS: We investigated 25 patients from 16 families with unexplained nephrocalcinosis and characteristic dental defects (amelogenesis imperfecta, gingival hyperplasia, impaired tooth eruption). To identify the causative gene, we performed genome-wide linkage analysis, exome capture, next-generation sequencing, and Sanger sequencing. RESULTS: All patients had bi-allelic FAM20A mutations segregating with the disease; 20 different mutations were identified. CONCLUSIONS: This autosomal recessive disorder, also known as enamel renal syndrome, of FAM20A causes nephrocalcinosis and amelogenesis imperfecta. We speculate that all individuals with biallelic FAM20A mutations will eventually show nephrocalcinosis.
Resumo:
Multicentric carpotarsal osteolysis (MCTO) is a rare skeletal dysplasia characterized by aggressive osteolysis, particularly affecting the carpal and tarsal bones, and is frequently associated with progressive renal failure. Using exome capture and next-generation sequencing in five unrelated simplex cases of MCTO, we identified previously unreported missense mutations clustering within a 51 base pair region of the single exon of MAFB, validated by Sanger sequencing. A further six unrelated simplex cases with MCTO were also heterozygous for previously unreported mutations within this same region, as were affected members of two families with autosomal-dominant MCTO. MAFB encodes a transcription factor that negatively regulates RANKL-induced osteoclastogenesis and is essential for normal renal development. Identification of this gene paves the way for development of novel therapeutic approaches for this crippling disease and provides insight into normal bone and kidney development.