890 resultados para conditional random fields
Resumo:
We recently predicted the existence of random primordial magnetic fields (RPMFs) in the form of randomly oriented cells with dipole-like structure with a cell size L(0) and an average magnetic field B(0). Here, we investigate models for primordial magnetic field with a similar web-like structure, and other geometries, differing perhaps in L(0) and B(0). The effect of RPMF on the formation of the first galaxies is investigated. The filtering mass, M(F), is the halo mass below which baryon accretion is severely depressed. We show that these RPMF could influence the formation of galaxies by altering the filtering mass and the baryon gas fraction of a halo, f(g). The effect is particularly strong in small galaxies. We find, for example, for a comoving B(0) = 0.1 mu G, and a reionization epoch that starts at z(s) = 11 and ends at z(e) = 8, for L(0) = 100 pc at z = 12, the f(g) becomes severely depressed for M < 10(7) M(circle dot), whereas for B(0) = 0 the f(g) becomes severely depressed only for much smaller masses, M < 10(5) M(circle dot). We suggest that the observation of M(F) and f(g) at high redshifts can give information on the intensity and structure of primordial magnetic fields.
Resumo:
The threshold behavior of the transport properties of a random metal in the critical region near a metal–insulator transition is strongly affected by the measuring electromagnetic fields. In spite of the randomness, the electrical conductivity exhibits striking phase-coherent effects due to broken symmetry, which greatly sharpen the transition compared with the predictions of effective medium theories, as previously explained for electrical conductivities. Here broken symmetry explains the sign reversal of the T → 0 magnetoconductance of the metal–insulator transition in Si(B,P), also previously not understood by effective medium theories. Finally, the symmetry-breaking features of quantum percolation theory explain the unexpectedly very small electrical conductivity temperature exponent α = 0.22(2) recently observed in Ni(S,Se)2 alloys at the antiferromagnetic metal–insulator transition below T = 0.8 K.
Resumo:
"Materials Central, Contract no. AF33(616)-6828, Project no. 7351."
Resumo:
Using methods of statistical physics, we study the average number and kernel size of general sparse random matrices over GF(q), with a given connectivity profile, in the thermodynamical limit of large matrices. We introduce a mapping of GF(q) matrices onto spin systems using the representation of the cyclic group of order q as the q-th complex roots of unity. This representation facilitates the derivation of the average kernel size of random matrices using the replica approach, under the replica symmetric ansatz, resulting in saddle point equations for general connectivity distributions. Numerical solutions are then obtained for particular cases by population dynamics. Similar techniques also allow us to obtain an expression for the exact and average number of random matrices for any general connectivity profile. We present numerical results for particular distributions.
Resumo:
Typical properties of sparse random matrices over finite (Galois) fields are studied, in the limit of large matrices, using techniques from the physics of disordered systems. For the case of a finite field GF(q) with prime order q, we present results for the average kernel dimension, average dimension of the eigenvector spaces and the distribution of the eigenvalues. The number of matrices for a given distribution of entries is also calculated for the general case. The significance of these results to error-correcting codes and random graphs is also discussed.
Resumo:
Onion (Allium cepa) is one of the most cultivated and consumed vegetables in Brazil and its importance is due to the large laborforce involved. One of the main pests that affect this crop is the Onion Thrips (Thrips tabaci), but the spatial distribution of this insect, although important, has not been considered in crop management recommendations, experimental planning or sampling procedures. Our purpose here is to consider statistical tools to detect and model spatial patterns of the occurrence of the onion thrips. In order to characterize the spatial distribution pattern of the Onion Thrips a survey was carried out to record the number of insects in each development phase on onion plant leaves, on different dates and sample locations, in four rural properties with neighboring farms under different infestation levels and planting methods. The Mantel randomization test proved to be a useful tool to test for spatial correlation which, when detected, was described by a mixed spatial Poisson model with a geostatistical random component and parameters allowing for a characterization of the spatial pattern, as well as the production of prediction maps of susceptibility to levels of infestation throughout the area.
Resumo:
Microgauss magnetic fields are observed in all galaxies at low and high redshifts. The origin of these intense magnetic fields is a challenging question in astrophysics. We show here that the natural plasma fluctuations in the primordial Universe (assumed to be random), predicted by the fluctuation - dissipation theorem, predicts similar to 0.034 mu G fields over similar to 0.3 kpc regions in galaxies. If the dipole magnetic fields predicted by the fluctuation- dissipation theorem are not completely random, microgauss fields over regions greater than or similar to 0.34 kpc are easily obtained. The model is thus a strong candidate for resolving the problem of the origin of magnetic fields in less than or similar to 10(9) years in high redshift galaxies.
Resumo:
We consider the case of two cavity modes of the electromagnetic field, which are coupled via the action of a parametric amplifier. The fields are allowed to leak from the cavity and homodyne measurement is performed on one of the modes. Because of the correlations between the modes, this leads to a reduction of the variance in a quadrature of the other mode, although no measurement is performed on it directly. We discuss how this relates to the Einstein-Podolky-Rosen Gedankenexperiment.
Resumo:
Cette thèse s'intéresse à étudier les propriétés extrémales de certains modèles de risque d'intérêt dans diverses applications de l'assurance, de la finance et des statistiques. Cette thèse se développe selon deux axes principaux, à savoir: Dans la première partie, nous nous concentrons sur deux modèles de risques univariés, c'est-à- dire, un modèle de risque de déflation et un modèle de risque de réassurance. Nous étudions le développement des queues de distribution sous certaines conditions des risques commun¬s. Les principaux résultats sont ainsi illustrés par des exemples typiques et des simulations numériques. Enfin, les résultats sont appliqués aux domaines des assurances, par exemple, les approximations de Value-at-Risk, d'espérance conditionnelle unilatérale etc. La deuxième partie de cette thèse est consacrée à trois modèles à deux variables: Le premier modèle concerne la censure à deux variables des événements extrême. Pour ce modèle, nous proposons tout d'abord une classe d'estimateurs pour les coefficients de dépendance et la probabilité des queues de distributions. Ces estimateurs sont flexibles en raison d'un paramètre de réglage. Leurs distributions asymptotiques sont obtenues sous certaines condi¬tions lentes bivariées de second ordre. Ensuite, nous donnons quelques exemples et présentons une petite étude de simulations de Monte Carlo, suivie par une application sur un ensemble de données réelles d'assurance. L'objectif de notre deuxième modèle de risque à deux variables est l'étude de coefficients de dépendance des queues de distributions obliques et asymétriques à deux variables. Ces distri¬butions obliques et asymétriques sont largement utiles dans les applications statistiques. Elles sont générées principalement par le mélange moyenne-variance de lois normales et le mélange de lois normales asymétriques d'échelles, qui distinguent la structure de dépendance de queue comme indiqué par nos principaux résultats. Le troisième modèle de risque à deux variables concerne le rapprochement des maxima de séries triangulaires elliptiques obliques. Les résultats théoriques sont fondés sur certaines hypothèses concernant le périmètre aléatoire sous-jacent des queues de distributions. -- This thesis aims to investigate the extremal properties of certain risk models of interest in vari¬ous applications from insurance, finance and statistics. This thesis develops along two principal lines, namely: In the first part, we focus on two univariate risk models, i.e., deflated risk and reinsurance risk models. Therein we investigate their tail expansions under certain tail conditions of the common risks. Our main results are illustrated by some typical examples and numerical simu¬lations as well. Finally, the findings are formulated into some applications in insurance fields, for instance, the approximations of Value-at-Risk, conditional tail expectations etc. The second part of this thesis is devoted to the following three bivariate models: The first model is concerned with bivariate censoring of extreme events. For this model, we first propose a class of estimators for both tail dependence coefficient and tail probability. These estimators are flexible due to a tuning parameter and their asymptotic distributions are obtained under some second order bivariate slowly varying conditions of the model. Then, we give some examples and present a small Monte Carlo simulation study followed by an application on a real-data set from insurance. The objective of our second bivariate risk model is the investigation of tail dependence coefficient of bivariate skew slash distributions. Such skew slash distributions are extensively useful in statistical applications and they are generated mainly by normal mean-variance mixture and scaled skew-normal mixture, which distinguish the tail dependence structure as shown by our principle results. The third bivariate risk model is concerned with the approximation of the component-wise maxima of skew elliptical triangular arrays. The theoretical results are based on certain tail assumptions on the underlying random radius.
Resumo:
The space subdivision in cells resulting from a process of random nucleation and growth is a subject of interest in many scientific fields. In this paper, we deduce the expected value and variance of these distributions while assuming that the space subdivision process is in accordance with the premises of the Kolmogorov-Johnson-Mehl-Avrami model. We have not imposed restrictions on the time dependency of nucleation and growth rates. We have also developed an approximate analytical cell size probability density function. Finally, we have applied our approach to the distributions resulting from solid phase crystallization under isochronal heating conditions
Resumo:
Intensive numerical studies of exact ground states of the two-dimensional ferromagnetic random field Ising model at T=0, with a Gaussian distribution of fields, are presented. Standard finite size scaling analysis of the data suggests the existence of a transition at ¿c=0.64±0.08. Results are compared with existing theories and with the study of metastable avalanches in the same model.
Resumo:
The low-temperature isothermal magnetization curves, M(H), of SmCo4 and Fe3Tb thin films are studied according to the two-dimensional correlated spin-glass model of Chudnovsky. We have calculated the magnetization law in approach to saturation and shown that the M(H) data fit well the theory at high and low fields. In our fit procedure we have used three different correlation functions. The Gaussian decay correlation function fits well the experimental data for both samples.