992 resultados para complementary DNA


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using variothermal polymer micro-injection molding, disposable arrays of eight polymer micro-cantilevers each 500 μm long, 100 μm wide and 25 μm thick were fabricated. The present study took advantage of an easy flow grade polypropylene. After gold coating for optical read-out and asymmetrical sensitization, the arrays were introduced into the Cantisens(®) Research system to perform mechanical and functional testing. We demonstrate that polypropylene cantilevers can be used as biosensors for medical purposes in the same manner as the established silicon ones to detect single-stranded DNA sequences and metal ions in real-time. A differential signal of 7 nm was detected for the hybridization of 1 μM complementary DNA sequences. For 100 nM copper ions the differential signal was found to be (36 ± 5) nm. Nano-mechanical sensing of medically relevant, nanometer-size species is essential for fast and efficient diagnosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A fluorinated OPA monomer containing the base thymine ((Z)-t-F-OPA) was synthesized in 12 steps, featuring a highly selective allylic over homoallylic Mitsunobu substitution for the introduction of the nucleobase. F-OPA modified PNA decamers were prepared by the MMTr/acyl protection strategy. The thermal stability of duplexes of PNA decamers containing (Z)-t-F-OPA units with antiparallel complementary DNA was measured. We found a strong dependence of stability from the sequential position of the (Z)-t-F-OPA units, ranging from ¢Tm of +2.4 to -8.1 °C/modification relative to unmodified PNA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tricyclo-DNA (tcDNA) is a sugar- and backbone-modified analogue of DNA that is currently tested as antisense oligonucleotide for the treatment of Duchenne muscular dystrophy. The name tricyclo-DNA is derived from the modified sugar-moiety: the deoxyribose is extended to a three-membered ring system. This modification is designed to limit the flexibility of the structure, thus giving rise to entropically stabilized hybrid duplexes formed between tcDNA and complementary DNA or RNA oligonucleotides. While the structural modifications increase the biostability of the therapeutic agent, they also render the oligonucleotide inaccessible to enzyme-based sequencing methods. Tandem mass spectrometry constitutes an alternative sequencing technique for partially and fully modified oligonucleotides. For reliable sequencing, the fragmentation mechanism of the structure in question must be understood. Therefore, the presented work evaluates the effect of the modified sugar-moiety on the gas-phase dissociation of single stranded tcDNA. Moreover, our experiments reflect the exceptional gas-phase stability of hybrid duplexes that is most noticeable in the formation of truncated duplex ions upon collision-induced dissociation. The stability of the duplex arises from the modified sugar-moiety, as the rigid structure of the tcDNA single strand minimizes the change of the entropy for the annealing. Moreover, the tc-modification gives rise to extended conformations of the nucleic acids in the gas-phase, which was studied by ion mobility spectrometry-mass spectrometry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glucagon is a 29 amino acid polypeptide hormone produced in the (alpha) cells of the pancreatic islets. The purpose of this research was to understand better the role of glucagon in the regulation of metabolic processes. As with other polypeptide hormones, the synthesis of glucagon is thought to involve a larger precursor, which is then enzymatically cleaved to the functional form. The specific research objectives were to obtain cloned copies of the messenger RNA (mRNA) for pancreatic glucagon, to determine their primary sequences, and from this coding information to deduce the amino acid sequence of the initial glucagon precursor. From this suggested preproglucagon sequence and prior information on possible proglucagon intermediate processing products, the overall objective of this research is to propose a possible pathway for the biosynthesis of pancreatic glucagon.^ Synthetic oligodeoxynucleotide probes of 14-nucleotides (14-mer) and 17-nucleotides (a 17-mer) complementary to codons specifying a unique sequence of mature glucagon were synthesized. The ('32)P-labeled-14-mer was hybridized with size-fractionated fetal bovine pancreatic poly(A('+))RNA bound to nitrocellulose. RNA fractions of (TURN)14S were found to hybridize specifically, resulting in an (TURN)10-fold enrichment for these sequences. These poly(A('+))RNAs were translated in a cell-free system and the products analyzed by gel electrophoresis. The translation products were found to be enriched for a protein of the putative size of mammalian preproglucagon ((TURN)21 kd). These enriched RNA fractions were used to construct a complementary DNA (cDNA) library is plasmid pBR322.^ Screening of duplicate colony filters with the ('32)P-labeled-17-mer and a ('32)P-labeled-17-mer-primed cDNA probe indicated 25 possible glucagon clones from 3100 colonies screened. Restriction mapping of 6 of these clones suggested that they represented a single mRNA species. Primary sequence analysis of one clone containing a 1200 base pair DNA insert revealed that it contained essentially a full-length copy of glucagon cDNA.^ Analaysis of the cDNA suggested that it encoded an initial translation product of 180 amino acids with an M(,r) = 21 kd. The first initiation codon (ATG, methionine) followed by the longest open reading frame of 540 nucleotides was preceded by a 5'-untranslated region of 90 nucleotides, and was followed by a longer 3'-untranslated region of 471 nucleotides, resulting in a total of 1101 nucleotides. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

At issue is whether or not isolated DNA is patent eligible under the U.S. Patent Law and the implications of that determination on public health. The U.S. Patent and Trademark Office has issued patents on DNA since the 1980s, and scientists and researchers have proceeded under that milieu since that time. Today, genetic research and testing related to the human breast cancer genes BRCA1 and BRCA2 is conducted within the framework of seven patents that were issued to Myriad Genetics and the University of Utah Research Foundation between 1997 and 2000. In 2009, suit was filed on behalf of multiple researchers, professional associations and others to invalidate fifteen of the claims underlying those patents. The Court of Appeals for the Federal Circuit, which hears patent cases, has invalidated claims for analyzing and comparing isolated DNA but has upheld claims to isolated DNA. The specific issue of whether isolated DNA is patent eligible is now before the Supreme Court, which is expected to decide the case by year's end. In this work, a systematic review was performed to determine the effects of DNA patents on various stakeholders and, ultimately, on public health; and to provide a legal analysis of the patent eligibility of isolated DNA and the likely outcome of the Supreme Court's decision. ^ A literature review was conducted to: first, identify principle stakeholders with an interest in patent eligibility of the isolated DNA sequences BRCA1 and BRCA2; and second, determine the effect of the case on those stakeholders. Published reports that addressed gene patents, the Myriad litigation, and implications of gene patents on stakeholders were included. Next, an in-depth legal analysis of the patent eligibility of isolated DNA and methods for analyzing it was performed pursuant to accepted methods of legal research and analysis based on legal briefs, federal law and jurisprudence, scholarly works and standard practice legal analysis. ^ Biotechnology, biomedical and clinical research, access to health care, and personalized medicine were identified as the principle stakeholders and interests herein. Many experts believe that the patent eligibility of isolated DNA will not greatly affect the biotechnology industry insofar as genetic testing is concerned; unlike for therapeutics, genetic testing does not require tremendous resources or lead time. The actual impact on biomedical researchers is uncertain, with greater impact expected for researchers whose work is intended for commercial purposes (versus basic science). The impact on access to health care has been surprisingly difficult to assess; while invalidating gene patents might be expected to decrease the cost of genetic testing and improve access to more laboratories and physicians' offices that provide the test, a 2010 study on the actual impact was inconclusive. As for personalized medicine, many experts believe that the availability of personalized medicine is ultimately a public policy issue for Congress, not the courts. ^ Based on the legal analysis performed in this work, this writer believes the Supreme Court is likely to invalidate patents on isolated DNA whose sequences are found in nature, because these gene sequences are a basic tool of scientific and technologic work and patents on isolated DNA would unduly inhibit their future use. Patents on complementary DNA (cDNA) are expected to stand, however, based on the human intervention required to craft cDNA and the product's distinction from the DNA found in nature. ^ In the end, the solution as to how to address gene patents may lie not in jurisprudence but in a fundamental change in business practices to provide expanded licenses to better address the interests of the several stakeholders. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study was to determine shifts in the microbial community structure and potential function based on standard Integrated Ocean Drilling Program (IODP) storage procedures for sediment cores. Standard long-term storage protocols maintain sediment temperature at 4°C for mineralogy, geochemical, and/or geotechnical analysis whereas standard microbiological sampling immediately preserves sediments at -80°C. Storage at 4°C does not take into account populations may remain active over geologic time scales at temperatures similar to storage conditions. Identification of active populations within the stored core would suggest geochemical and geophysical conditions within the core change over time. To test this potential, the metabolically active fraction of the total microbial community was characterized from IODP Expedition 325 Great Barrier Reef sediment cores prior to and following a 3-month storage period. Total RNA was extracted from complementary 2, 20, and 40 m below sea floor sediment samples, reverse transcribed to complementary DNA and then sequenced using 454 FLX sequencing technology, yielding over 14,800 sequences from the six samples. Interestingly, 97.3% of the sequences detected were associated with lineages that changed in detection frequency during the storage period including key biogeochemically relevant lineages associated with nitrogen, iron, and sulfur cycling. These lineages have the potential to permanently alter the physical and chemical characteristics of the sediment promoting misleading conclusions about the in situ biogeochemical environment. In addition, the detection of new lineages after storage increases the potential for a wider range of viable lineages within the subsurface that may be underestimated during standard community characterizations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alterations in pathways mediated by retinoblastoma susceptibility gene (RB) product are among the most common in human cancer. Mice with a single copy of the Rb gene are shown to develop a syndrome of multiple neuroendocrine neoplasia. The earliest Rb-deficient atypical cells were identified in the intermediate and anterior lobes of the pituitary, the thyroid and parathyroid glands, and the adrenal medulla within the first 3 months of postnatal development. These cells form gross tumors with various degrees of malignancy by postnatal day 350. By age of 380 days, 84% of Rb+/− mice exhibited lung metastases from C-cell thyroid carcinomas. Expression of a human RB transgene in the Rb+/− mice suppressed carcinogenesis in all tissues studied. Of particular clinical relevance, the frequency of lung metastases also was reduced to 12% in Rb+/− mice by repeated i.v. administration of lipid-entrapped, polycation-condensed RB complementary DNA. Thus, in spite of long latency periods during which secondary alterations can accumulate, the initial loss of Rb function remains essential for tumor progression in multiple types of neuroendocrine cells. Restoration of RB function in humans may prove an effective general approach to the treatment of RB-deficient disseminated tumors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The discovery that peptide nucleic acids (PNA) mimic DNA and RNA by forming complementary duplex structures following Watson–Crick base pairing rules opens fields in biochemistry, diagnostics, and medicine for exploration. Progress requires the development of modified PNA duplexes having unique and well defined properties. We find that anthraquinone groups bound to internal positions of a PNA oligomer intercalate in the PNA–DNA hybrid. Their irradiation with near-UV light leads to electron transfer and oxidative damage at remote GG doublets on the complementary DNA strand. This behavior mimics that observed in related DNA duplexes and provides the first evidence for long range electron (hole) transport in PNA–DNA hybrid. Analysis of the mechanism for electron transport supports hole hopping.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lysophosphatidic acid (1-acyl-2-lyso-sn-glycero-3-phosphate, LPA) is a multifunctional lipid mediator found in a variety of organisms that span the phylogenetic tree from humans to plants. Although its physiological function is not clearly understood, LPA is a potent regulator of mammalian cell proliferation; it is one of the major mitogens found in blood serum. In Xenopus laevis oocytes, LPA elicits oscillatory Cl− currents. This current, like other effects of LPA, is consistent with a plasma membrane receptor-mediated activation of G protein-linked signal transduction pathways. Herein we report the identification of a complementary DNA from Xenopus that encodes a functional high-affinity LPA receptor. The predicted structure of this protein of 372 amino acids contains features common to members of the seven transmembrane receptor superfamily with a predicted extracellular amino and intracellular carboxyl terminus. An antisense oligonucleotide derived from the first 5–11 predicted amino acids, selectively inhibited the expression of the endogenous high-affinity LPA receptors in Xenopus oocytes, whereas the same oligonucleotide did not affect the low-affinity LPA receptor. Expression of the full-length cRNA in oocytes led to an increase in maximal Cl− current due to increased expression of the high-affinity LPA receptor, but activation of the low-affinity receptor was, again, unaffected. Oocytes expressing cRNA prepared from this clone showed no response to other lipid mediators including prostaglandins, leukotrienes, sphingosine 1-phosphate, sphingosylphosphorylcholine, and platelet-activating factor, suggesting that the receptor is highly selective for LPA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2-Nitropropane (2-NP), an important industrial solvent and a component of cigarette smoke, is mutagenic in bacteria and carcinogenic in rats. 8-Amino-2′-deoxyguanosine (8-amino-dG) is one of the types of DNA damage found in liver, the target organ in 2-NP-treated rats. To investigate the thermodynamic properties of 8-amino-dG opposite each of the four DNA bases, we have synthesized an 11mer, d(CCATCG*CTACC), in which G* represents the modified base. By annealing a complementary DNA strand to this modified 11mer, four sets of duplexes were generated each containing one of the four DNA bases opposite the lesion. Circular dichroism studies indicated that 8-amino-dG did not alter the global helical properties of natural right-handed B-DNA. The thermal stability of each duplex was examined by UV melting measurements and compared with its unmodified counterpart. For the unmodified 11mer, the relative stability of the complementary DNA bases opposite G was in the order C > T > G > A, as determined from their –ΔG° values. The free energy change of each modified duplex was lower than its unmodified counterpart, except for the G*:G pair that exhibited a higher melting transition and a larger –ΔG° than the G:G duplex. Nevertheless, the stability of the modified 11mer duplex also followed the order C > T > G > A when placed opposite 8-amino-dG. To explore if 8-amino-dG opposite another 8-amino-dG has any advantage in base pairing, a G*:G* duplex was evaluated, which showed that the stability of this duplex was similar to the G*:G duplex. Mutagenesis of 8-amino-dG in this sequence context was studied in Escherichia coli, which showed that the lesion is weakly mutagenic (mutation frequency ∼10–3) but still can induce a variety of targeted and semi-targeted mutations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The transcriptional response to epidermal growth factor (EGF) was examined in a cultured cell model of adhesion. Gene expression was monitored in human embryonic kidney cells (HEK293) after attachment of cells to the extracellular matrix (ECM) proteins, laminin, and fibronectin, by using complementary DNA micorarrays printed with 1,718 individual human genes. Cluster analysis revealed that the influence of EGF on gene expression, either positive or negative, was largely independent of ECM composition. However, clusters of EGF-regulated genes were identified that were diagnostic of the type of ECM proteins to which cells were attached. In these clusters, attachment of cells to a laminin or fibronectin substrata specifically modified the direction of gene expression changes in response to EGF stimulation. For example, in HEK293 cells attached to fibronectin, EGF stimulated an increase in the expression of some genes; however, genes in the same group were nonresponsive or even suppressed in cells attached to laminin. Many of the genes regulated by EGF and ECM proteins in this manner are involved in ECM and cytoskeletal architecture, protein synthesis, and cell cycle control, indicating that cell responses to EGF stimulation can be dramatically affected by ECM composition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The biological significance of DNA amplification in cancer is thought to be due to the selection of increased expression of a single or few important genes. However, systematic surveys of the copy number and expression of all genes within an amplified region of the genome have not been performed. Here we have used a combination of molecular, genomic, and microarray technologies to identify target genes for 17q23, a common region of amplification in breast cancers with poor prognosis. Construction of a 4-Mb genomic contig made it possible to define two common regions of amplification in breast cancer cell lines. Analysis of 184 primary breast tumors by fluorescence in situ hybridization on tissue microarrays validated these results with the highest amplification frequency (12.5%) observed for the distal region. Based on GeneMap'99 information, 17 known genes and 26 expressed sequence tags were localized to the contig. Analysis of genomic sequence identified 77 additional transcripts. A comprehensive analysis of expression levels of these transcripts in six breast cancer cell lines was carried out by using complementary DNA microarrays. The expression patterns varied from one cell line to another, and several overexpressed genes were identified. Of these, RPS6KB1, MUL, APPBP2, and TRAP240 as well as one uncharacterized expressed sequence tag were located in the two common amplified regions. In summary, comprehensive analysis of the 17q23 amplicon revealed a limited number of highly expressed genes that may contribute to the more aggressive clinical course observed in breast cancer patients with 17q23-amplified tumors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Extracellular ATP exerts pronounced biological actions in virtually every organ or tissue that has been studied. In the central and peripheral nervous system, ATP acts as a fast excitatory transmitter in certain synaptic pathways [Evans, R.J., Derkach, V. & Surprenant, A. (1992) Nature (London) 357, 503-505; Edwards, F.A., Gigg, A.J. & Colquhoun, D. (1992) Nature (London) 359, 144-147]. Here, we report the cloning and characterization of complementary DNA from rat brain, encoding an additional member (P2X4) of the emerging multigenic family of ligand-gated ATP channels, the P2X receptors. Expression in Xenopus oocytes gives an ATP-activated cation-selective channel that is highly permeable to Ca2+ and whose sensitivity is modulated by extracellular Zn2+. Surprisingly, the current elicited by ATP is almost insensitive to the common P2X antagonist suramin. In situ hybridization reveals the expression of P2X4 mRNA in central nervous system neurons. Northern blot and reverse transcription-PCR (RT-PCR) analysis demonstrate a wide distribution of P2X4 transcripts in various tissues, including blood vessels and leukocytes. This suggests that the P2X4 receptor might mediate not only ATP-dependent synaptic transmission in the central nervous system but also a wide repertoire of biological responses in diverse tissues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protein-protein interactions involving specific transactivation domains play a central role in gene transcription and its regulation. The promoter-specific transcription factor Sp1 contains two glutamine-rich transcriptional activation domains (A and B) that mediate direct interactions with the transcription factor TFIID complex associated with RNA polymerase II and synergistic effects involving multiple Sp1 molecules. In the present study, we report the complementary DNA sequence for an alternatively spliced form of mouse Sp1 (mSp1-S) that lacks one of the two glutamine-rich activation regions present in the full-length protein. Corresponding transcripts were identified in mouse tissues and cell lines, and an Sp1-related protein identical in size to that predicted for mSp1-S was detected in mouse nuclear extracts. Cotransfection analysis revealed that mSp1-S lacks appreciable activity at promoters containing a single Sp1 response element but is active when multiple Sp1 sites are present, suggesting synergistic interactions between multiple mSp1-S molecules. The absence of a single glutamine-rich domain does not fully explain the properties of the smaller protein and indicates that additional structural features account for its unique transcriptional activity. The functional implications of this alternatively spliced form of Sp1 are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study has examined expression and circulating levels of C-type natriuretic peptide (CNP) in the euryhaline bull shark, Carcharhinus leucas. Complementary DNA and deduced amino acid sequence for CNP in C leucas were determined by RACE methods. Homology of CNP amino acid sequence in C. leucas was high both for proCNP and for mature CNP when compared with previously identified elasmobranch CNPs. Mature CNP sequence in C. leucas was identical to that in Triakis seyllia and Seyliorhinus canicula. Levels of expression of CNP mRNA were significantly decreased in the atrium but did not change in either the brain or ventricle following acclimation to a SW environment. However, circulating levels of CNP significantly increased from 86.0 +/- 7.9 fmol ml(-1) in FW to 144.9 +/- 19.5 fmol ml(-1) in SW. The results presented demonstrate that changes in environmental salinity influences both synthesis of CNP from the heart and also circulating levels in C. leucas. Potential stimulus for release and modes of action are discussed. (c) 2005 Elsevier Inc. All rights reserved.