998 resultados para complement activation
Resumo:
Complement activation contributes to inflammation and tissue damage in human demyelinating diseases and in rodent models of demyelination. Inhibitors of complement activation ameliorate disease in the rat model antibody-dependent experimental autoimmune encephalomyelitis and rats unable to generate the membrane attack complex of complement develop inflammation without demyelination. The role of the highly active chemotactic and anaphylactic complement-derived peptide C5a in driving inflammation and pathology in rodent models of demyelination has been little explored. Here we have used a small molecule C5a receptor antagonist, AcF-[OPdChaWR], to examine the effects of C5a receptor blockade in rat models of brain inflammation and demyelination. C5a receptor antagonist therapy completely blocked neutrophil response to C5a in vivo but had no effect on clinical disease or resultant pathology in either inflammatory or demyelinating rat models. We conclude that C5a is not required for disease induction or perpetuation in these strongly complement-dependent disease models.
Resumo:
Introduction. Guillain-Barré syndrome (GBS) is an immune-mediated polyneuropathy and the principal cause of acute neuromuscular paralysis. The most prominent GBS subtypes are: acute inflammatory demyelinating polyneuropathy (AIDP), acute motor axonal neuropathy (AMAN), acute motor-sensory axonal neuropathy (AMSAN) and Fisher syndrome (FS). Differences in geographical distribution of variants have been reported. In Brazil, there are few studies describing the characteristics of GBS, but none on the frequency of GBS variants and their clinical manifestations. Infection-induced aberrant immune response resulting from molecular mimicry and formation of cross-reacting antibodies, contribute to complement activation. Functional biallelic polymorphism in immunoglobulin receptors that influence the affinity of IgG subclasses and the type of immune response have been described, suggesting genetic susceptibility to developing disease. It remains unclear whether individuals carrying different FCGR alleles have differential risk for GBS and⁄or disease severity. The goals of this study were: (1) To characterize GBS and describe the clinical findings in a cohort of patients with GBS from the state of Rio Grande do Norte, Brazil; (2) to determine whether polymorphism in FCGR were associated with development of GBS, and (3) to tease out whether the global gene expression studies could be a tool to identify pathways and transcriptional networks which could be regulated and decrease the time of disease. Methods. Clinical and laboratory data for 149 cases of GBS diagnosed from 1994 to 2013 were analyzed. Genomic DNA and total RNA were extracted from whole blood. Antigangliosides antibodies were determined in the sera. In addition, we also assessed whether FCGR polymorphism are present in GBS (n=141) and blood donors (n=364), and global gene expressions were determined for 12 participants with GBS. Blood samples were collected at the diagnosis and post-recovery. Results. AIDP was the most frequent variant (81.8%) of GBS, followed by AMAN (14.7%) and AMSAN (3.3%). The incidence of GBS was 0.3 ⁄ 100,000 people for the state of Rio Grande do Norte and cases occurred at a younger age. GBS was preceded by infections, with the axonal variant associated with episodes of diarrhea (P = 0.025). Proximal weakness was more frequent in AIDP, and distal weakness predominant in the axonal variant. Compared to 42.4% of cases with AIDP (P<0.0001), 84.6% of cases with the axonal variant had nadir in <10 days. Individuals with the axonal variant took longer to recover deambulation (P<0.0001). The mortality of GBS was 5.3%. A worse outcome was related to an axonal variant (OR17.063; P=0.03) and time required to improve one point in the Hughes functional scale (OR 1.028; P=0.03). The FCGR genotypes and allele frequencies did not differ significantly between the patients with GBS and the controls (FCGR2A p=0.367 and FCGR3A p=0.2430). Global gene expression using RNAseq showed variation in transcript coding for protein isoforms during acute phase of disease. Conclusions. The annual incidence of GBS was 0.3 per 100,00 and there was no seasonal pattern. A predominance of the AIDP variant was seen, and the incidence of the disease decreased with age. The distribution of weakness is a function of the clinical variants, and individuals with the axonal variant had a poorer prognosis. Early diagnosis and variant identification leads to proper intervention decreasing in long-term morbidity. FCGR polymorphisms do not seem to influence susceptibility to GBS in this population. This study found deregulated genes and signs of transcriptional network alterations during the acute and recovery phases in GBS. Identification of pathways altered during disease might be target for immune regulation and with potential to ameliorate symptoms.
Resumo:
Some patients with cancer never develop metastasis, and their host response might provide cues for innovative treatment strategies. We previously reported an association between autoantibodies against complement factor H (CFH) and early-stage lung cancer. CFH prevents complement-mediated cytotoxicity (CDC) by inhibiting formation of cell-lytic membrane attack complexes on self-surfaces. In an effort to translate these findings into a biologic therapy for cancer, we isolated and expressed DNA sequences encoding high-affinity human CFH antibodies directly from single, sorted B cells obtained from patients with the antibody. The co-crystal structure of a CFH antibody-target complex shows a conformational change in the target relative to the native structure. This recombinant CFH antibody causes complement activation and release of anaphylatoxins, promotes CDC of tumor cell lines, and inhibits tumor growth in vivo. The isolation of anti-tumor antibodies derived from single human B cells represents an alternative paradigm in antibody drug discovery.
Resumo:
Serine protease inhibitors (serpin) play essential roles in many organisms. Mammalian serpins regulate the blood coagulation, fibrinolysis, inflammation and complement activation pathways. In parasitic helminths, serpins are less well characterized, but may also be involved in evasion of the host immune response. In this study, a Schistosoma japonicum serpin (SjB10), containing a 1212 bp open reading frame (ORF), was cloned, expressed and functionally characterized. Sequence analysis, comparative modelling and structural-based alignment revealed that SjB10 contains the essential structural motifs and consensus secondary structures of inhibitory serpins. Transcriptional profiling demonstrated that SjB10 is expressed in adult males, schistosomula and eggs but particularly in the cercariae, suggesting a possible role in cercarial penetration of mammalian host skin. Recombinant SjB10 (rSjB10) inhibited pancreatic elastase (PE) in a dose-dependent manner. rSjB10 was recognized strongly by experimentally infected rat sera indicating that native SjB10 is released into host tissue and induces an immune response. By immunochemistry, SjB10 localized in the S. japonicum adult foregut and extra-embryonic layer of the egg. This study provides a comprehensive demonstration of sequence and structural-based analysis of a functional S. japonicum serpin. Furthermore, our findings suggest that SjB10 may be associated with important functional roles in S. japonicum particularly in host-parasite interactions.
Resumo:
Interaction between the complement system and carbon nanotubes (CNTs) can modify their intended biomedical applications. Pristine and derivatised CNTs can activate complement primarily via the classical pathway which enhances uptake of CNTs and suppresses pro-inflammatory response by immune cells. Here, we report that the interaction of C1q, the classical pathway recognition molecule, with CNTs involves charge pattern and classical pathway activation that is partly inhibited by factor H, a complement regulator. C1q and its globular modules, but not factor H, enhanced uptake of CNTs by macrophages and modulated the pro-inflammatory immune response. Thus, soluble complement factors can interact differentially with CNTs and alter the immune response even without complement activation. Coating CNTs with recombinant C1q globular heads offers a novel way of controlling classical pathway activation in nanotherapeutics. Surprisingly, the globular heads also enhance clearance by phagocytes and down-regulate inflammation, suggesting unexpected complexity in receptor interaction. From the Clinical Editor: Carbon nanotubes (CNTs) maybe useful in the clinical setting as targeting drug carriers. However, it is also well known that they can interact and activate the complement system, which may have a negative impact on the applicability of CNTs. In this study, the authors functionalized multi-walled CNT (MWNT), and investigated the interaction with the complement pathway. These studies are important so as to gain further understanding of the underlying mechanism in preparation for future use of CNTs in the clinical setting.
Resumo:
Antecedentes: El trasplante renal es la mejor alternativa terapéutica para la enfermedad renal crónica terminal. Los medicamentos inmunosupresores previenen el rechazo. El rechazo mediado por anticuerpos es frecuente y disminuye la función y duración del injerto. Objetivo: Evaluar sistemáticamente la evidencia disponible relacionada con la eficacia y seguridad del tratamiento para el rechazo mediado por anticuerpos en pacientes trasplantados renales. Metodologia: Revisión sistemática en bases de datos MEDLINE, EMBASE, Scopus y Biblioteca virtual de la salud. Literatura gris google scholar, google academico, www.clinicaltrialsregister.eu, and https://clinicaltrials.gov/. Búsqueda manual referencias artículos pre-seleccionados así como de revisiones previamente publicadas. Se siguieron las recomendacioes guia PRISMA para la identificacion de artículos potenciales, tamizaje y selección teniendo en cuenta los criterios de inclusion. Extracción datos de acuerdo a las variables, revisión calidad de los artículos elegidos utilizando evaluación riesgo de segos de Cochrane. Resultados: Se seleccionaron 9 ensayos clínicos publicados entre 1980 y 2016, incluyeron 222 pacientes (113 brazo de intervención y 109 en el control), seguimiento promedio 16 meses. Intervenciones evaluadas plasmaféresis, inmunoadsorción y rituximab. Hubo una amplia heterogeneidad en la definición de criterios de inclusión, criterios diagnósticos de rechazo y medidas de evaluación de eficacia de las intervenciones. Tres estudios encontraron diferencias estadísticamente significativas entre los grupos de tratamiento. Conclusiones: La evidencia sobre la eficacia de los tratamientos del rechazo mediado por anticuerpos en injertos renales es de baja calidad. Son necesarios ensayos clínicos controlados para poder definir el tratamiento óptimo de estos pacientes.
Resumo:
Since there are no studies evaluating the participation of the complement system (CS) in Jorge Lobo's disease and its activity on the fungus Lacazia loboi, we carried out the present investigation. Fungal cells with a viability index of 48% were obtained from the footpads of BALB/c mice and incubated with a pool of inactivated serum from patients with the mycosis or with sterile saline for 30 min at 37 ºC. Next, the tubes were incubated for 2 h with a pool of noninactivated AB+ serum, inactivated serum, serum diluted in EGTA-MgCl2, and serum diluted in EDTA. The viability of L. loboi was evaluated and the fungal suspension was cytocentrifuged. The slides were submitted to immunofluorescence staining using human anti-C3 antibody. The results revealed that 98% of the fungi activated the CS by the alternative pathway and no significant difference in L. loboi viability was observed after CS activation. In parallel, frozen histological sections from 11 patients were analyzed regarding the presence of C3 and IgG by immunofluorescence staining. C3 and IgG deposits were observed in the fungal wall of 100% and 91% of the lesions evaluated, respectively. The results suggest that the CS and immunoglobulins may contribute to the defense mechanisms of the host against L. loboi.
Resumo:
Background Numerous interactions between the coagulation and complement systems have been shown. Recently, links between coagulation and mannan-binding lectin-associated serine protease-1 (MASP-1) of the complement lectin pathway have been proposed. Our aim was to investigate MASP-1 activation of factor XIII (FXIII), fibrinogen, prothrombin, and thrombin-activatable fibrinolysis inhibitor (TAFI) in plasma-based systems, and to analyse effects of MASP-1 on plasma clot formation, structure and lysis. Methodology/Principal Findings We used a FXIII incorporation assay and specific assays to measure the activation products prothrombin fragment F1+2, fibrinopeptide A (FPA), and activated TAFI (TAFIa). Clot formation and lysis were assessed by turbidimetric assay. Clot structure was studied by scanning electron microscopy. MASP-1 activated FXIII and, contrary to thrombin, induced FXIII activity faster in the Val34 than the Leu34 variant. MASP-1-dependent generation of F1+2, FPA and TAFIa showed a dose-dependent response in normal citrated plasma (NCP), albeit MASP-1 was much less efficient than FXa or thrombin. MASP-1 activation of prothrombin and TAFI cleavage were confirmed in purified systems. No FPA generation was observed in prothrombin-depleted plasma. MASP-1 induced clot formation in NCP, affected clot structure, and prolonged clot lysis. Conclusions/Significance We show that MASP-1 interacts with plasma clot formation on different levels and influences fibrin structure. Although MASP-1-induced fibrin formation is thrombin-dependent, MASP-1 directly activates prothrombin, FXIII and TAFI. We suggest that MASP-1, in concerted action with other complement and coagulation proteins, may play a role in fibrin clot formation.
Resumo:
Mannan-binding lectin-associated serine protease-1 (MASP-1), a protein of the complement lectin pathway, resembles thrombin in terms of structural features and substrate specificity, and it has been shown to activate coagulation factors. Here we studied the effects of MASP-1 on clot formation in whole blood (WB) and platelet-poor plasma (PPP) by thrombelastography and further elucidated the underlying mechanism. Cleavage of prothrombin by MASP-1 was investigated by SDS-PAGE and N-terminal sequencing of cleavage products. Addition of MASP-1 or thrombin to WB and PPP shortened the clotting time and clot formation time significantly compared to recalcified-only samples. The combination of MASP-1 and thrombin had additive effects. In a purified system, MASP-1 was able to induce clotting only in presence of prothrombin. Analysis of MASP-1-digested prothrombin confirmed that MASP-1 cleaves prothrombin at three cleavage sites. In conclusion, we have shown that MASP-1 is able to induce and promote clot formation measured in a global setting using the technique of thrombelastography. We further confirmed that MASP-1-induced clotting is dependent on prothrombin. Finally, we have demonstrated that MASP-1 cleaves prothrombin and identified its cleavage sites, suggesting that MASP-1 gives rise to an alternative active form of thrombin by cleaving at the cleavage site R393.
Resumo:
Deficiencies of complement proteins of the classical pathway are strongly associated with the development of autoimmune diseases. Deficiency of Clr has been observed to occur concomitantly with deficiency in Cls and 9 out of 15 reported cases presented systemic lupus erythernatosus (SLE). Here, we describe a family in which all four children are deficient in Cls but only two of them developed SLE. Hemolytic activity mediated by the alternative and the lectin pathways were normal, but classical pathway activation was absent in all children`s sera. Cls was undetectable, while in the parents` sera it was lower than in the normal controls. The levels of Clr observed in the siblings and parents sera were lower than in the control, while the concentrations of other complement proteins (C3, C4, MBL and MASP-2) were normal in all family members. Impairment of Cls synthesis was observed in the patients` fibroblasts when analyzed by confocal microscopy. We show that all four siblings are homozygous for a mutation at position 938 in exon 6 of the Cls cDNA that creates a premature stop codon. Our investigations led us to reveal the presence of previously uncharacterized splice variants of Cls mRNA transcripts in normal human cells. These variants are derived from the skipping of exon 3 and from the use of an alternative 3` splice site within intron I which increases the size of exon 2 by 87 nucleotides. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Trichomonas vaginalis is a flagellated protozoan which causes trichomoniasis, a sexually transmitted disease of the human genitourinary tract, The importance of the alternative complement pathway in host defence against T. vaginalis was investigated in vitro. Kinetic studies utilising immunofixation following electrophoresis showed that both a strongly and weakly virulent strain of T, vaginalis activated murine serum C3. In vivo studies with congenic-resistant, C5-deficient, B10.D2/OSn- and C5-sufficient, B10.D2/nSn mice showed that the presence of C5 is a significant factor in the innate host resistance to primary infection with a strongly virulent, but not a weakly virulent trichomonad strain.
Resumo:
Activation of the human complement system of plasma proteins during immunological host defense can result in overproduction of potent proinflammatory peptides such as the anaphylatoxin C5a. Excessive levels of C5a are associated with numerous immunoinflammatory diseases, but there is as yet no clinically available antagonist to regulate the effects of C5a. We now describe a series of small molecules derived from the C-terminus of C5a, some of which are the most potent low-molecular-weight C5a receptor antagonists reported to date for the human polymorphonuclear leukocyte (PMN) C5a receptor. H-1 NMR spectroscopy was used to determine solution structures for two cyclic antagonists and to indicate that antagonism is related to a turn conformation, which can be stabilized in cyclic molecules that are preorganized for receptor binding. While several cyclic derivatives were of similar antagonistic potency, the most potent antagonist was a hexapeptide-derived macrocycle AcF[OPdChaWR] with an IC50 = 20 nM against a maximal concentration of C5a (100 nM) on intact human PMNs. Such potent C5a antagonists may be useful probes to investigate the role of C5a in host defenses and to develop therapeutic agents for the treatment of many currently intractable inflammatory conditions.