176 resultados para compartmentalization
Resumo:
The phylogenetic proximity of primates to humans, along with their behavioral, biochemical, and anatomical similarities, make such animals more interesting experimental models for biomedical researches, as compared to classical laboratory animals. Another aspect that has called the attention of researchers is the differentiated quadrupedalism present in some primates. The tufted capuchin monkey uses the ground and tree branches as its support for locomotion, showing various postures while performing this task. On the basis of this information, we have decided to study the rectus abdominis muscle of the tufted capuchin monkey, with the following goals: the frequency and area of fiber types; its possible compartmentalization; and identify if this muscle is better adapted to phasic or postural activities. To do this, samples were removed from 4 regions of the rectus abdominis muscle of 6 adult male tufted capuchin monkeys, and were submitted to reaction with m-ATPase, (with alkaline and acid pre-incubation), NADH, and H.E.. Results showed: a statistically significant difference (P<0.05) for both frequency and area, between fiber types FG and FOG and FG and SO, but did not show a statistically significant difference between fibers FOG and SO, in all studied regions; similarity in frequency and area of a same fiber type (FG, FOG, and SO) among the studied regions. Based on these data, it was concluded that: the rectus abdominis muscle of the tufted capuchin monkey does not show fiber compartmentalization, since the distribution and size patterns of the different fiber types are similar in the studied regions; there is a predominance of fast twitch fibers (FG + FOG) over slow twitch fibers (SO), for frequency and area, which characterizes the muscle as being more dedicated to phasic than to postural activities. © 2006 Sociedad Chilena de Anatom.
Resumo:
The Cladocera assemblages in two cascade reservoirs located in the Paranapanema River in Brazil were studied during two consecutive years. Upstream Chavantes Reservoir is an accumulation system, with a long water retention time, high depth and oligo-mesotrophic status. The downstream Salto Grande Reservoir is a small, run-of-river reservoir, with a short water retention time, shallow depth and meso-eutrophic status. The goal of this study was to determine the inter- and intra-reservoir limnological differences with emphasis on the Cladocerans assemblages. The following questions were posed: (i) what are the seasonal dynamics of the reservoir spatial structures; (ii) how dynamics, seasonally, is the reservoirs spatial structure; and (iii) are the reservoir independent systems? A total of 43 Cladoceran species were identified in this study. Ceriodaphnia silvestrii was the most abundant and frequent species found in Chavantes Reservoir, while C. cornuta was most abundant and frequent in Salto Grande Reservoir. The Cladoceran species richness differed significantly among sampling sites for both reservoirs. In terms of abundance, there was a significant variation among sampling sites and periods for both reservoirs. A cluster analysis indicated a higher similarity among the deeper compartments, and the intermediate river-reservoir zones was grouped with the riverine sampling sites. For the smaller Salto Grande Reservoir, the entrance of a middle size tributary causes major changes in the system. A distinct environment was observed in the river mouth zone of another small tributary, representing a shallow environment with aquatic macrophyte stands. A canonical correlation analysis between environmental variables and Cladoceran abundance explained 75% of the data variability, and a complementary factorial analysis explained 65% of the variability. The spatial compartmentalization of the reservoirs, as well as the particular characteristics of the two study reservoirs, directly influenced the structure of the Cladoceran assemblages. The conditions of the lacustrine (dam) zone of the larger Chavantes Reservoir were reflected in the upstream zone of the smaller downstream Salto Grande Reservoir, highlighting the importance of plankton exportation in reservoir cascade systems. The comparative spatial-temporal analysis indicated conspicuous differences between the two reservoirs, reinforcing the necessity of considering tropical/subtropical reservoirs as complex, multi-compartmental water systems. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Asia Pty Ltd.
Resumo:
This paper presents a method applied to the seacoast town of Peruibe, São Paulo State, Brazil. The method encompasses the application of remote sensing interpretation techniques and field survey to obtain geotechnical data and thus generate cartographic products composed of easily grouped units that work as database objects and can de used to assist geotechnical zoning. The so-called Compartmentalization Basic Units (CBUs) show the smallest land surface analyzed from its physiographic elements and have in their cores the same geotechnical properties, making it easier to analyze the potentialities and the fragilities of the physical environment and its susceptibility to the action of natural and anthropic processes. In the study area, sixty-eight units were individualized in which geotechnical properties were inferred by photo interpretation criteria, using textural properties of the image adjusted with field observations. The method proved to be easily reproducible, and is especially useful in regions where the absence of basic maps makes it impossible to establish homogeneous zones through traditional overlay of different topic informations.
Resumo:
Copepod assemblages from two cascade reservoirs were analyzed during two consecutive years. The upstream reservoir (Chavantes) is a storage system with a high water retention time (WRT of 400 days), and the downstream one (Salto Grande) is a run-of-river system with only 1. 5 days WRT. Copepod composition, richness, abundance, and diversity were correlated with the limnological variables and the hydrological and morphometric features. Standard methods were employed for zooplankton sampling and analysis (vertical 50-μm net hauls and counting under a stereomicroscope). Two hypotheses were postulated and confirmed through the data obtained: (1) compartmentalization is more pronounced in the storage reservoir and determines the differences in the copepod assemblage structure; and (2) the assemblages are more homogeneous in the run-of-river reservoir, where the abundance decreases because of the predominance of washout effects. For both reservoirs, the upstream zone is more distinctive. In addition, in the smaller reservoir the influence of the input from tributaries is stronger (turbid waters). Richness did not differ significantly among seasons, but abundance was higher in the run-of-river reservoir during summer. © 2012 Springer Science+Business Media Dordrecht.
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Pós-graduação em Geologia Regional - IGCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Bandamento em cromossomos de peixes: discussão sobre o conceito de compartimentalização cromossômica
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)