979 resultados para comet assay dimethylhidrazine


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Silybin (SB), a constituent of the medicinal plant Silybum marianum, is reported to be a potent hepatoprotective agent, but little is currently known regarding its genotoxicity, mutagenicity and potential chemopreventive properties. In this study, we evaluated the ability of SB to induce DNA migration and micronuclei (MN) formation in human hepatoma cells (HepG2). Also, possible preventive effects of SB on MN formation induced by three different mutagens, bleomycin (BLEO), benzo[a] pyrene (B[alpha] P) and aflatoxin B(1) (AFB(1)), were studied. To clarify the possible mechanism of SB antimutagenicity, three treatment protocols were applied: pretreatment, in which SB was added before the application of the mutagens; simultaneous treatment, in which SB was added during treatment and post-treatment, in which SB was added after the application of the mutagens. At concentrations up to 100 mu M, SB was non-genotoxic, while at a concentration of 200 mu M, SB induced DNA migration, generated oxidized DNA bases, reduced cell viability, decreased the replicative index of the cells and induced oxidative stress. It is noteworthy that SB was able to reduce the genotoxic effect induced by B[alpha] P, BLEO and AFB1 in pretreatment and simultaneous treatments but had no significant effect on DNA damage induction in post-treatment. Taken together, our findings indicate that SB presents anti-genotoxic activity in vitro, which suggests potential use as a chemopreventive agent.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Azo dyes constitute the largest group of colorants used in industry and can pass through municipal waste water plants nearly unchanged due to their resistance to aerobic treatment, which potentially exposes humans and local biota to adverse effects. Unfortunately, little is known about their environmental fate. Under anaerobic conditions, some azo dyes are cleaved by microorganisms forming potentially carcinogenic aromatic amines. In the present study, the azo dye Disperse Orange 1, widely used in textile dyeing, was tested using the comet, Salmonella/microsome mutagenicity, cell viability, Daphnia similis and Microtox (R) assays. The human hepatoma cell line (HepG2) was used in the comet assay and for cell viability. In the mutagenicity assay. Salmonella typhimurium strains with different levels of nitroreductase and o-acetyltransferase were used. The dye showed genotoxic effects with respect to HepG2 cells at concentrations of 0.2, 0.4, 1.0, 2.0 and 4.0 mu g/mL. In the mutagenicity assay, greater responses were obtained with the strains TA98 and YG1041, suggesting that this compound mainly induces frameshift mutations. Moreover, the mutagenicity was greatly enhanced with the strains overproducing nitroreductase and o-acetyltransferase, showing the importance of these enzymes in the mutagenicity of this dye. In addition, the compound induced apoptosis after 72 h in contact with the HepG2 cells. No toxic effects were observed for either D. similis or Vibrio fischeri. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The treatment of textile effluents by the conventional method based on activated sludge followed by a chlorination step is not usually an effective method to remove azo dyes, and can generate products more mutagenic than the untreated dyes. The present work evaluated the efficiency of conventional chlorination to remove the genotoxicity/mutagenicity of the azo dyes Disperse Red 1, Disperse Orange 1, and Disperse Red 13 from aqueous solutions. The comet and micronucleus assays with HepG2 cells and the Salmonella mutagenicity assay were used. The degradation of the dye molecules after the same treatment was also evaluated, using ultraviolet and visible absorption spectrum measurements (UV-vis), high performance liquid chromatography coupled to a diode-array detector (HPLC-DAD), and total organic carbon removal (TOC) analysis. The comet assay showed that the three dyes studied induced damage in the DNA of the HepG2 cells in a dose-dependent manner. After chlorination, these dyes remained genotoxic, although with a lower damage index (DI). The micronucleus test showed that the mutagenic activity of the dyes investigated was completely removed by chlorination, under the conditions tested. The Salmonella assay showed that chlorination reduced the mutagenicity of all three dyes in strain YG1041, but increased the mutagenicity of Disperse Red 1 and Disperse Orange 1 in strain TA98. With respect to chemical analysis, all the solutions showed rapid discoloration and a reduction in the absorbance bands characteristic of the chromophore group of each dye. However, the TOC was not completely removed, showing that chlorination of these dyes is not efficient in mineralizing them. It was concluded that conventional chlorination should be used with caution for the treatment of aqueous samples contaminated with azo dyes. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of antioxidants during chemotherapy has been shown to reduce or prevent the undesirable effects experienced by healthy cells. Micronutrient selenium is well known for its antioxidant properties; however, selenium exhibits a bimodal nature in that both its beneficial and toxic properties lie within a limited and narrow dose range. The present study investigated the possible protective effects of selenomethionine (SM) on the cytotoxicity, genotoxicity and clastogenicity of the chemotherapic doxorubicin (DXR), a key chemotherapic used in cancer treatment. Human peripheral lymphocytes were treated in vitro with varying concentrations of SM (0.25 mu M, 0.5 mu M, 1.0 mu M and 2.0 mu M), tested in combination with DXR (0.15 mu g/mL). SM alone was not cytotoxic and when combined with DXR treatment, reduced the DNA damage index significantly, the frequency of chromosomal aberrations, the number of aberrant metaphases and the frequency of apoptotic cells. The mechanism of chemoprotection of SM may be related to its antioxidant properties as well as its ability to interfere with DNA repair pathways. Therefore this study showed that SM is effective in reducing the genetic damage induced by the antitumoral agent DXR. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objectives: To evaluate the genotoxic risk to hairdressers exposed daily to chemical substances such as hair dyes, waving and straightening preparations and manicurists` products by the Comet assay test (single-cell gel electrophoresis). Methods: The Comet assay was performed on blood samples from 69 female hairdressers (36.4 +/- 10.7 years old) currently employed in 21 different beauty institutes in Sao Paulo, Brazil, and on 55 female control blood donors (32.6 +/- 10.0 years old) from the Sao Paulo University Clinical Hospital blood bank. All the control subjects had occupations other than hairdresser. Comet assays were performed by evaluating 100 blood lymphocytes per individual and graded by visual score according to comet tail length. Results: The hairdressers showed a higher frequency of DNA damage revealed by Comet Score (159.8 +/- 71) when compared to the control group (125.4 +/- 64.1), and the difference was statistically significant by the Student`s t-test (P = 0.005). Multiple regression analysis showed that in addition to the hairdressers` profession, tobacco use contributed to the higher frequency of cells with comets (P < 0.05). Conclusions: The observed DNA damage could be associated with the hairdressers` occupational environment, where different chemicals are chronically manipulated and inhaled. Considering that this profession in many countries, including Brazil, is not officially regulated, more attention should focus on these professionals not only by legislative bodies but also by multidisciplinary teams able to develop and implement risk prevention and control strategies for chemical, physical and biological agents to which hairdressers are exposed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resistance to chemotherapeutic drugs can be an obstacle to a successful treatment of cancer patients in part associated with individual response and differences in the DNA repair system. The Comet assay is an informative test to investigate DNA damage and repair in cells in response to a variety of DNA-damaging agents, including chemotherapeutic drugs. The aim of this study was to assess leukocytes damage after in-vitro cisplatin treatment and DNA repair action using the Comet assay in 20 patients with melanoma and 20 cancer-free individuals. Leukocytes` DNA damage before and after cisplatin treatment, in three different concentrations, was analyzed. The DNA repair capability was investigated after 1-5 h of in-vitro cells growing without cisplatin. The Comet score of the patients` basal DNA damage was higher than that observed in controls, but the difference was not statistically significant (P=0.85). Although both groups had similar Comet scores to all cisplatin concentrations tested and the DNA repair times, the basal DNA damage (P < 0.001) and cisplatin damages (P < 0.005) were statistically lower than the different repair times investigated. Considering the progressive increase in the Comet score due to repair time, the negative results here observed could be associated with the reduced cell culture incubation that should be better evaluated. Considering the mutagenic action of cisplatin on tumor cells and the importance of individual DNA repair mechanisms in the chemotherapeutic melanoma treatment, the peripheral leukocytes could be particularly useful as a tool for DNA repair response identified by the Comet assay. Melanoma Res 21:99-105 (C) 2011 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Impaired DNA repair efficiency in systematic lupus erythematosus (SLE) patients has been reported ill some studies, mainly regarding the repair of oxidative damage, but little is known about repair kinetics towards primarily single-stranded DNA breaks. In the present study, we aimed to investigate: (a) the efficiency of SLE peripheral blood leucocytes in repairing DNA damage induced by ionizing radiation and (b) the association of DNA repair gene (XRCC1 Arg399Gln, XRCC3 Thr241Met and XRCC4 Ile401Thr) polymorphisms in SLE patients, considering the whole group, or stratified sub-groups according to clinical and laboratory features. A total of 163 SLE patients and 125 healthy control were studied. The kinetics of DNA strand break repair was evaluated by the comet assay, and genotyping for DNA repair genes was performed by PCR-RFLP. Compared with controls. SLE leucocytes exhibited decreased efficiency of DNA repair evaluated at 30 min following irradiation. A significant association with DNA repair gene polymorphisms was not observed for the whole group of SLE patients; however, the XRCC1Arg399Gln polymorphism was associated with the presence of anti-dsDNA antibody. The concomitance of two DNA repair polymorphic sites was associated with the presence of neuropsychiatric manifestations and antiphospholipid antibody syndrome. Taken together, these results indicated that SLE leucocytes repair less efficiently the radiation-induced DNA damage, and DNA repair polymorphic sites may predispose to the development of particular clinical and laboratory features. Lupus (2008) 17, 988-995.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Anti-obesity medications deserve special considerations at the present time due to an increasing number of overweight and obese people who require these therapeutic alternatives. Obesity is positively associated with several chronic illnesses, including cancer. In this work, we evaluated the possible genotoxic and/or cytotoxic actions of two drugs, sibutramine and fenproporex, in the doses of 10, 20 and 40 mg/kg body weight (bw), administered intraperitoneally in male Swiss mice. The genotoxic effect was analyzed by comet assay and micronucleus test. We found that both drugs increased the frequency of genotoxic damage in Swiss mice, but did not present cytotoxic activities towards the polychromatic erythrocytes of the bone marrow of these animals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Casearia sylvestris is used in Brazil as a popular medicine to treat ulcer, inflammation and tumour. Caseargrewiin F is a clerodane diterpene isolated from the ethanolic leaf extract of C.sylvestris. The aim of the study was to assess the capacity of the ethanolic extract of C.sylvestris leaves and caseargrewiin F to protect DNA and verify if both the compounds cause some DNA damage, using the micronucleus (MN) test and comet assay in mice. Balb-C mice were treated with the extract [3.13, 6.25, 12.5, 25, 50 and 75 mg/kg body weight (b.w.)] and caseargrewiin F (0.16, 0.32, 0.63, 1.3, 2.5 and 3.8 mg/kg b.w.) for 14 days. On day 15, DNA damage was induced by intra-peritoneal (i.p.) injection of cyclophosphamide (CP) (i.p.) at 50 mg/kg b.w. after the MN test and comet assay were performed. A protective effect of ethanolic extract was observed in MN test (6.25 and 12.5 mg/kg b.w.) and the comet assay (3.13 and 6.25, 12.5 and 25 mg/kg b.w.). Caseargrewiin F showed protective effect at 0.63, 1.3 and 2.5 mg/kg b.w. only in comet assay. We also tested the ability of compounds of C.sylvestris to induce MN and to increase the comet assay tail moment. The experimental design was similar to the DNA protection assay except that in test groups we omitted the CP challenge. We observed increased damage at 50 and 75 mg/kg b.w. of ethanolic extract of C.sylvestris and caseargrewiin F at 3.18 mg/kg b.w. in both the MN test and comet assay. We conclude that ethanolic extract of C. sylvestris and caseargrewiin F can protect cells against DNA damage induced by CP at low concentrations, but at high concentrations these compounds also induce DNA damage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Physalis angulata L (Solanaceae) is a medicinal plant from North of Brazil, whose different extracts and infusions are commonly used in the popular medicine for the treatment of malaria, asthma, hepatitis, dermatitis and rheumatism. However, the genotoxic effects of P. angulata on human cells is not well known. The main purpose of the present study was to evaluate the in vitro genotoxic effects of aqueous extract of P angulata using the comet assay and the micronucleus assay in human lymphocytes provided from 6 healthy donors. Treatments with P angulata extracts were performed in vitro in order to access the extent of DNA damage. The comet assay has shown that treatments with P angulata at 0.5, 1.0, 2.0, 3.0 and 6.0 mu g/mL in Culture medium were genotoxic. Lymphocytes treated with P angulata at the concentrations of 3.0 and 6.0 mu g/mL in culture medium showed a statistically significant increase in the frequency of micronucleus (p<0.05), however, the cytokinesis blocked proliferation index (CBPI) was not decreased after P angulata treatment. In conclusion, the present work demonstrated the genotoxic effects of P angulata extract on human lymphocytes in vitro.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pfaffia paniculata (Brazilian ginseng) roots and/or its extracts have shown anti-neoplastic, chemopreventive, and anti-angiogenic properties. The aim of this work was to investigate the chemopreventive mechanisms of this root in Mice Submitted to the infant model of hepatocarcinogenesis, evaluating the effects oil cellular proliferation, apoptosis. and intercellular communication. Fifteen-day-old BALB/c male mice were given, i.p., 10 mu g/g of the carcinogen N-nitrosodiethylamine (DEN). Animals were separated into three groups at weaning and were given different concentrations of powdered P. paniculata root (0%, 2%, or 10%) added to commercial food for 27 weeks. Control group (CT) was not exposed to the carcinogen and was given ration without the root. After euthanasia, the animals` liver and body weight were measured. Liver fragments were sampled to Study intercellular communication, molecular biology, and histopathological analysis. Cellular proliferation was evaluated by immunohistochemistry for PCNA, apoptosis was evaluated by apoptotic bodies count and alkaline cornet technique, and inter-cellular communication by diffusion of lucifer yellow dye, immunofluorescence, western blot and real-time PCR for connexins 26 and 32. Chronic treatment with powdered P. paniculata root reduced cellular proliferation and increased apoptosis in the 2%, group. Animals in the 10% group had an increase in apoptosis with chronic inflammatory process. Intercellular communication showed no alterations in any of the groups analyzed. These results Indicate that chemopreventive effects of P. paniculata are related to the control of cellular proliferation and apoptosis, but not to cell communication and/or connexin expression, and are directly Influenced by the root concentration. (C) 2009 Elsevier GmbH. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acute physical exercise is associated with increased oxygen consumption, which could result in an increased formation of reactive oxygen species (ROS). ROS can react with several organic structures, namely DNA, causing strand breaks and a variety of modified bases in DNA. Physical exercise training seems to decrease the incidence of oxidative stress-associated diseases, and is considered as a key component of a healthy lifestyle. This is a result of exercise-induced adaptation, which has been associated with the possible increase in antioxidant activity and in oxidative damage repair enzymes, leading to an improved physiological function and enhanced resistance to oxidative stress (Radak et al. 2008). Human 8-oxoguanine DNA glycosylase 1 (hOGG1) is involved in the base excision repair (BER) pathway and encodes an enzyme responsible for removing the most common product of oxidative damage in DNA, 8-hydroxyguanine (8-OH-G). The genetic polymorphism of hOGG1 at codon 326 results in a serine (Ser) to cysteine (Cys) amino acid substitution (Ser326Cys). It has been suggested that the carriers of at least one hOGG1Cys variant allele exhibit lower 8-OH-G excision activity than the wild-type (Wilson et al. 2011). The aim of this study was to investigate the possible influence of hOGG1 Ser326Cys polymorphism on DNA damage and repair activity in response to 16 weeks of combined physical exercise training, in thirty healthy Caucasian men. Comet assay was carried out using peripheral blood lymphocytes and enabled the evaluation of DNA damage, both strand breaks and FPG-sensitive sites, and DNA repair activity. Genotypes were determined by PCR-RFLP analysis. The subjects with Ser/Ser genotype were considered as wild-type group (n=20), Ser/Cys and Cys/Cys genotype were analyzed together as mutant group (n=10). Regarding differences between pre and post-training in the wild-type group, the results showed a significant decrease in DNA strand breaks (DNA SBs) (p=0.002) and also in FPG-sensitive sites (p=0.017). No significant differences were observed in weight (p=0.389) and in lipid peroxidation (MDA) (p=0.102). A significant increase in total antioxidant capacity (evaluated by ABTS) was observed (p=0.010). Regarding mutant group, the results showed a significant decrease in DNA SBs (p=0.008) and in weight (p=0.028). No significant differences were observed in FPG-sensitive sites (p=0.916), in ABTS (p=0.074) and in MDA (p=0.086). No significant changes in DNA repair activity were observed in both genotype groups. This preliminary study suggests the possibility of different responses in DNA damage to physical exercise training, considering the hOGG1 Ser326Cys polymorphism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Environmental tobacco smoke (ETS) is recognized as an occupational hazard in the hospitality industry. Although Portuguese legislation banned smoking in most indoor public spaces, it is still allowed in some restaurants/bars, representing a potential risk to the workers’ health, particularly for chronic respiratory diseases. The aims of this work were to characterize biomarkers of early genetic effects and to disclose proteomic signatures associated to occupational exposure to ETS and with potential to predict respiratory diseases development. A detailed lifestyle survey and clinical evaluation (including spirometry) were performed in 81 workers from Lisbon restaurants. ETS exposure was assessed through the level of PM 2.5 in indoor air and the urinary level of cotinine. The plasma samples were immunodepleted and analysed by 2D-SDSPAGE followed by in-gel digestion and LC-MS/MS. DNA lesions and chromosome damage were analysed innlymphocytes and in exfoliated buccal cells from 19 cigarette smokers, 29 involuntary smokers, and 33 non-smokers not exposed to tobacco smoke. Also, the DNA repair capacity was evaluated using an ex vivo challenge comet assay with an alkylating agent (EMS). All workers were considered healthy and recorded normal lung function. Interestingly, following 2D-DIGE-MS (MALDI-TOF/TOF), 61 plasma proteins were found differentially expressed in ETS-exposed subjects, including 38 involved in metabolism, acute-phase respiratory inflammation, and immune or vascular functions. On the other hand, the involuntary smokers showed neither an increased level of DNA/chromosome damage on lymphocytes nor an increased number of micronuclei in buccal cells, when compared to non-exposed non-smokers. Noteworthy, lymphocytes challenge with EMS resulted in a significantly lower level of DNA breaks in ETS-exposed as compared to non-exposed workers (P<0.0001) suggestive of an adaptive response elicited by the previous exposure to low levels of ETS. Overall, changes in proteome may be promising early biomarkers of exposure to ETS. Likewise, alterations of the DNA repair competence observed upon ETS exposure deserves to be further understood. Work supported by Fundação Calouste Gulbenkian, ACSS and FCT/Polyannual Funding Program.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nutrition science has evolved into a multidisciplinary field that applies molecular biology and integrates individual health with the epidemiologic investigation of population health. Nutritional genomics studies the functional interaction of food and its components, macro and micronutrients, with the genome at the molecular, cellular, and systemic level. Diet can influence cancer development in several ways, namely direct action of carcinogens in food that can damage DNA, diet components (macro or micronutrients) that can block or induce enzymes involved in activation or deactivation of carcinogenic substances. Moreover, inadequate intake of some molecules involved in DNA synthesis, repair or methylation can influence mutation rate or changes in gene expression. Several studies support the idea that diet can influence the risk of cancer; however information concerning the precise dietary factor that determines human cancer is an ongoing debate. A lot of epidemiological studies, involving food frequency questionnaires, have been developed providing important information concerning diet and cancer, however, diet is a complex composite of various nutrients (macro and micronutrients) and non-nutritive food constituents that makes the search for specific factors almost limitless.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

RESUMO:Em 1994 a acrilamida (AA) foi classificada pela IARC como um provável cancerígeno para o homem. Para além da utilização de AA em numerosas aplicações industriais, a AA está também presente numa grande variedade de alimentos ricos em amido e processados a temperaturas elevadas. Esta exposição através da ingestão de produtos alimentares despoletou elevadas preocupações ao nível do risco para a saúde pública e poderá implicar um risco adicional para o aparecimento de cancro. A glicidamida (GA), o metabolito epóxido formado a partir da oxidação da AA provavelmente através do citocromo P450 2E1, é considerada por vários estudos, o principal responsável pela carcinogenicidade da AA. Actualmente existe uma escassez de resultados relativamente aos mecanismos de genotoxicidade da AA e GA em células de mamífero. Por este motivo, o objectivo deste estudo centra-se na avaliação das consequências genéticas da exposição à AA e GA, recorrendo-se para tal ao uso de células de mamífero como modelo. Tendo como base este objectivo avaliou-se a citotoxicidade da AA e GA, através do ensaio do MTT, e realizaram-se dois testes citogenéticos, o teste das aberrações cromossómicas (CAs) e o teste da troca de cromátides irmãs (SCEs), de modo a avaliar as lesões de DNA induzidas por estes compostos em células de hamster Chinês V79. Os resultados globalmente mostraram que a GA é mais citotóxica e clastogénica do que a AA. No âmbito deste trabalho, foi também efectuada a quantificação de aductos específicos de DNA, nomeadamente N7-(2-carbamoil-2-hidroxietil)guanina (N7-GA-Gua) e N3-(2-carbamoil-2-hidroxietil)adenina (N3-GA-Ade). Os resultados obtidos permitem afirmar que os níveis de N7-GA-Gua e a concentração de GA apresentam uma relação linear dose-resposta. Foi também identificada uma óptima correlação entre os níveis de N7-GA-Gua e a frequência de troca de cromátides irmãs. Adicionalmente, e de forma a compreender os mecanismos de toxicidade da AA, estudaram-se os mecanismos dependentes da modulação do glutationo reduzido (GSH), nomeadamente da butionina sulfoximina (BSO), um inibidor da síntese de GSH, do GSH-monoetil estér (GSH-EE), um composto permeável nas células e que é intra-celularmente hidrolisado a GSH e ainda do GSH adicionado exogenamente ao meio de cultura, em células V79. Os resultados obtidos reforçaram o papel da modulação do GSH nos efeitos de citotoxicidade e clastogenicidade da AA. Para além dos estudos efetuados com células V79, procedeu-se também à determinação da frequência de SCEs, à quantificação de aductos específicos de DNA, bem como ao ensaio do cometa alcalino em amostras de dadores saudáveis expostos à AA e GA. Tanto os resultados obtidos através do ensaio das SCE, como pela quantificação de aductos específicos de DNA, ambos efectuados em linfócitos estimulados, originaram resultados comparáveis aos obtidos anteriormente para as células V79, reforçando a ideia de que a GA é bastante mais genotóxica do que a AA. Por outro lado, os resultados obtidos pelo ensaio do cometa para exposição à AA e GA mostraram que apenas esta última aumenta o nível das lesões de DNA. Outro objectivo deste trabalho, foi a identificação de possíveis associações existentes entre as lesões de DNA, quantificadas através do ensaio das SCEs e do cometa, e biomarcadores de susceptibilidade, tendo em conta os polimorfismos genéticos individuais envolvidos na destoxificação e nas vias de reparação do DNA (BER, NER, HRR e NHEJ) em linfócitos expostos à GA. Tal permitiu identificar associações entre os níveis de lesão de DNA determinados através do ensaio das SCEs, e os polimorfismos genéticos estudados, apontando para uma possível associação entre o GSTP1 (Ile105Val) e GSTA2 (Glu210Ala) e a frequência de SCEs. Por outro lado, os resultados obtidos através do ensaio do cometa sugerem uma associação entre as lesões de DNA e polimorfismos da via BER (MUTYH Gln335His e XRCC1 Gln39Arg) e da via NER (XPC Ala499val e Lys939Gln), considerando os genes isoladamente ou combinados. Estes estudos contribuem para um melhor entendimento da genotoxicidade e carcinogenicidade da AA e GA em células de mamífero, bem como da variabilidade da susceptibilidade individual na destoxificação e reparação de lesões de DNA provocadas pela exposição a estes xenobióticos alimentares. ----------- ABSTRACT:Acrylamide (AA) has been classified as a probable human carcinogen by IARC. Besides being used in numerous industrial applications, AA is also present in a variety of starchy cooked foods. This AA exposure scenario raised concerns about risk in human health and suggests that the oral consumption of AA is an additional risk factor for cancer. A considerable number of findings strongly suggest that the reactive metabolite glycidamide (GA), an epoxide generated presumably by cytochrome P450 2E1, plays a central role in AA carcinogenesis. Until now there are a scarcity of results concerning the mechanisms of genotoxicity of AA and GA in mammalian cells. In view of that, the study described in this thesis aims to unveil the genetic consequences of AA and GA exposure using mammalian cells as a model system. With this aim we evaluated the cytotoxicity of AA and GA using the MTT assay and subsequently performed two cytogenetic end-points: chromosomal aberrations (CAs) and sister chromatid exchanges (SCEs), in order to evaluate DNA damage induced by these compounds in V79 Chinese hamster cell line. The results showed that GA was more cytotoxic and clastogenic than AA. Within the scope of this thesis the quantification of specific DNA adducts were also performed, namely N7-(2-carbamoyl-2-hydroxyethyl)guanine (N7-GA-Gua) and N3-(2-carbamoyl-2-hydroxyethyl)adenine (N3-GA-Ade). Interestingly, the GA concentration and the levels of N7-GA-Gua presented a linear dose-response relationship. Further, a very good correlation between the levels of N7-GA-Gua and the extent of SCEs were observed. In order to understand the mechanisms of AA-induced toxicity, the modulation of reduced glutathione (GSH)-dependent mechanisms were studied, namely the evaluation of the effect of buthionine sulfoximine (BSO), an effective inhibitor of GSH synthesis, of GSH-monoethyl ester (GSH-EE), a cell permeable compound that is intracellularly hydrolysed to GSH and also of GSH endogenously added to culture medium,z in V79 cell line. The overall results reinforced the role of GSH in the modulation of the cytotoxic and clastogenic effects induced by AA.Complementary to the studies performed in V79 cells, SCEs, specific DNA-adducts and alkaline comet assay in lymphocytes from healthy donors exposed to AA and GA were also evaluated. Both, the frequency of SCE and the quantification of specific GA DNA adducts, produced comparable results with those obtained in V79 cell line, reinforcing the idea that GA is far more genotoxic than AA. Further, the DNA damaging potential of AA and GA in whole blood leukocytes evaluated by the alkaline comet assay, showed that GA, but not AA, increases DNA damage. Additionally, this study aimed to identify associations between DNA damage and biomarkers of susceptibility, concerning individual genetic polymorphisms involved in detoxification and DNA repair pathways (BER, NER, HRR and NHEJ) on the GA-induced genotoxicity assessed by the SCE assay and by the alkaline comet assay. The extent of DNA damage determined by the levels of SCEs induced by GA seems to be modulated by GSTP1 (Ile105Val) and GSTA2 (Glu210Ala) genotypes. Moreover, the results obtained from the comet assay suggested associations between DNA damage and polymorphisms of BER (MUTYH Gln335His and XRCC1 Gln399Arg) and NER (XPC Ala499Val and Lys939Gln) genes, either alone or in combination. The overall results from this study contribute to a better understanding of the genotoxicity and carcinogenicity of AA and GA in mammalian cells, as well as the knowledge about the variability in individual susceptibility involved in detoxification and repair of DNA damage due to these dietary xenobiotics.